PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of Bismuth Oxide Nanoparticles, Cisplatin and Baicalein-rich Fraction on ROS Generation in Proton Beam irradiated Human Colon Carcinoma Cells

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: Proton beam radiotherapy is an advanced cancer treatment technique, which would reduce the effects of radiation on the surrounding healthy cells. The usage of radiosensitizers in this technique might further elevate the radiation dose towards the cancer cells. Material and methods: The present study investigated the production of intracellular reactive oxygen species (ROS) due to the presence of individual radiosensitizers, such as bismuth oxide nanoparticles (BiONPs), cisplatin (Cis) or baicalein-rich fraction (BRF) from Oroxylum indicum plant, as well as their combinations, such as BiONPs-Cis (BC), BiONPs-BRF (BB), or BiONPs-Cis-BRF (BCB), on HCT-116 colon cancer cells under proton beam radiotherapy. Results: It was found that the ROS in the presence of Cis at 3 Gy of radiation dose was the highest, followed by BC, BiONPs, BB, BRF, and BCB treatments. The properties of bismuth as a radical scavenger, as well as the BRF as a natural compound, might contribute to the lower intracellular ROS induction. The ROS in the presence of Cis and BC combination were also time-dependent and radiation dose-dependent. Conclusions: As the prospective alternatives to the Cis, the BC combination and individual BiONPs showed the capacities to be developed as radiosensitizers for proton beam therapy.
Słowa kluczowe
Rocznik
Strony
30--36
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
  • Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Japan
  • Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Japan
  • Faculty of Health Sciences, Hiroshima International University, Hiroshima, Japan
autor
  • Hyogo Ion Beam Medical Centre, Hyogo, Japan
  • Hyogo Ion Beam Medical Centre, Hyogo, Japan
autor
  • Medical Radiation Discipline, School Medical Sciences, RMIT University, Victoria, Australia
  • School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
  • School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Penang, Malaysia
  • School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
Bibliografia
  • 1. Matsumoto Y, Ando K, Kato TA, et al. Difference in Degree of Sub-Lethal Damage Recovery Between Clinical Proton Beams and X-Rays. Radiat Prot Dosimetry. 2019;183(1-2):93-97. https://doi.org/10.1093/rpd/ncy270
  • 2. Chew MT, Jones B, Hill M, Bradley DA. Radiation, a two-edged sword: From untoward effects to fractionated radiotherapy. Radiat Phys Chem. 2021;178(108994). https://doi.org/10.1016/j.radphyschem.2020.108994
  • 3. Zhang M, Qin N, Jia X, Zou WJ, Khan A, Yue NJ. Investigation on using high-energy proton beam for total body irradiation (TBI). J Appl Clin Med Phys. 2016;17(5):90-98. https://doi.org/10.1120/jacmp.v17i5.6223
  • 4. Abdul Rashid R, Zainal Abidin S, Khairil Anuar MA, et al. Radiosensitization effects and ROS generation by high Z metallic nanoparticles on human colon carcinoma cell (HCT116) irradiated under 150 MeV proton beam. OpenNano. 2019;4:100027. https://doi.org/10.1016/j.onano.2018.100027
  • 5. Alan Mitteer R, Wang Y, Shah J, et al. Proton beam radiation induces DNA damage and cell apoptosis in glioma stem cells through reactive oxygen species. Sci Rep. 2015;5(13961):1-12. https://doi.org/10.1038/srep13961
  • 6. Moulder JE. Chemical radiosensitizers: the Journal history. Int J Radiat Biol. 2019:95(7):940-944. https://doi.org/10.1080/09553002.2019.1569779
  • 7. Boateng F, Ngwa W. Delivery of nanoparticle-based radiosensitizers for radiotherapy applications. Int J Mol Sci. 2020;21(273):1-22. https://doi.org/10.3390/ijms21010273
  • 8. Jiang L, Iwahashi H. The roles of radio-functional natural chemicals for the development of cancer radiation therapy. Rev Environ Health. 2019;34(1):5-12. https://doi.org/10.1515/reveh-2018-0057
  • 9. Kozak J, Jonak K, Maciejewski R. The function of miR-200 family in oxidative stress response evoked in cancer chemotherapy and radiotherapy. Biomed Pharmacother. 2020;125(110037):1-11. https://doi.org/10.1016/j.biopha.2020.110037
  • 10. Chemocare.com. Chemotherapy. Chemocare.com. Published 2016. Accessed December 23, 2016. http://chemocare.com/chemotherapy/drug-info/
  • 11. Aghili M, Andalib B, Moghaddam ZK, Safaie M, Hashemi FA, Darzikolaie NM. Concurrent Chemo- Radiobrachytherapy with Cisplatin and Medium Dose Rate Intra- Cavitary Brachytherapy for Locally Advanced Uterine Cervical Cancer. Asian Pacific J Cancer Prev. 2018;19:2745-2750. https://doi.org/10.22034/APJCP.2018.19.10.2745
  • 12. Rashid RA, Razak KA, Geso M, Abdullah R, Dollah N, Rahman WN. Radiobiological Characterization of the Radiosensitization Effects by Gold Nanoparticles for Megavoltage Clinical Radiotherapy Beams. Bionanoscience. 2018;8(3):713-722. https://doi.org/10.1007/s12668-018-0524-5
  • 13. Muhammad MA, Rashid RA, Lazim RM, Dollah N, Razak KA, Rahman WN. Evaluation of radiosensitization effects by Platinum nanodendrites for 6 MV photon beam radiotherapy. Radiat Phys Chem. 2018;150:40-45. https://doi.org/10.1016/j.radphyschem.2018.04.018
  • 14. Khairil Anuar MA, Sisin NNT, Akasaka H, et al. Effect of Nanoparticle Size on Radiosensitization Effect and ROS Generation in Human Colon Carcinoma Cells (HCT 116) After 150 MeV Proton Beam Irradiation. J Nucl Relat Technol. 2021;18(1):17-25
  • 15. Sisin NNT, Abidin SZ, Yunus MA, Zin HM, Razak KA, Rahman WN. Evaluation of Bismuth Oxide Nanoparticles as Radiosensitizer for Megavoltage Radiotherapy. Int J Adv Sci Eng Inf Technol. 2019;9(4):1434-1443. https://doi.org/10.18517/ijaseit.9.4.7218
  • 16. Abidin SZ, Zulkifli ZA, Razak KA, Zin H, Yunus MA, Rahman WN. PEG coated bismuth oxide nanorods induced radiosensitization on MCF-7 breast cancer cells under irradiation of megavoltage radiotherapy beams. Mater Today Proc. 2019;16:1640-1645. https://doi.org/10.1016/j.matpr.2019.06.029
  • 17. Vinardell MP, Mitjans M. Metal/Metal Oxide Nanoparticles for Cancer Therapy. In: Goncalves G, Tobias G, eds. Nanomedicine and Nanotoxicology. Springer International Publishing; 2018:341-364. https://doi.org/10.1007/978-3-319-89878-0_10
  • 18. Hadi F, Tavakkol S, Laurent S, et al. Combinatorial effects of radiofrequency hyperthermia and radiotherapy in the presence of magneto-plasmonic nanoparticles on MCF-7 breast cancer cells. J Cell Physiol. 2019;234(11): 20028-20035. https://doi.org/10.1002/jcp.28599
  • 19. Kefayat A, Ghahremani F, Safavi A, Hajiaghababa A, Moshtaghian J. C-phycocyanin: a natural product with radiosensitizing property for enhancement of colon cancer radiation therapy efficacy through inhibition of COX-2 expression. Sci Rep. 2019;9(1):1-13. https://doi.org/10.1038/s41598-019-55605-w
  • 20. Wang H, Jiang H, Corbet C, et al. Piperlongumine increases sensitivity of colorectal cancer cells to radiation: Involvement of ROS production via dual inhibition of glutathione and thioredoxin systems. Cancer Lett. 2019;450:42-52. https://doi.org/10.1016/j.canlet.2019.02.034
  • 21. Rahman WN, Mat NFC, Long NAC, Rashid RA, Dollah N, Abdullah R. Radiosensitizing effects of Oroxylum indicum extract in combination with megavoltage radiotherapy beams. In: Materials Today: Proceedings. Vol 16. Elsevier Ltd.; 2019:2072-2077. https://doi.org/10.1016/j.matpr.2019.06.094
  • 22. Prasad S, Gupta SC, Tyagi AK. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 2017;387:95-105. https://doi.org/10.1016/j.canlet.2016.03.042
  • 23. Wang H, Zhang X. ROS reduction does not decrease the anticancer efficacy of X-Ray in two breast cancer cell lines. Oxid Med Cell Longev. 2019;2019(3782074):1-12. https://doi.org/10.1155/2019/3782074
  • 24. Chen Y, Li N, Wang J, et al. Enhancement of mitochondrial ROS accumulation and radiotherapeutic efficacy using a Gd-doped titania nanosensitizer. Theranostics. 2019;9(1):167-178. https://doi.org/10.7150/thno.28033
  • 25. Sisin NNT, Mat NFC, Abdullah R, Rahman WN. Baicalein-rich Fraction as a Potential Radiosensitizer or Radioprotective for HDR Brachytherapy: A Preliminary Study. J Nucl Relat Technol. 2020;18(1):9-16
  • 26. Sisin NNT, Azam NA, Rashid RA, et al. Dose enhancement by bismuth oxide nanoparticles for HDR brachytherapy. J Phys Conf Ser. 2020;1497(012002):1-5. https://doi.org/10.1088/1742-6596/1497/1/012002
  • 27. Sisin NNT, Razak KA, Abidin SZ, et al. Synergetic influence of bismuth oxide nanoparticles, cisplatin and baicalein-rich fraction on reactive oxygen species generation and radiosensitization effects for clinical radiotherapy beams. Int J Nanomedicine. 2020;2020(15):7805-7823
  • 28. Zulkifli ZA, Razak KA, Rahman WNWA, Abidin SZ. Synthesis and Characterisation of Bismuth Oxide Nanoparticles using Hydrothermal Method: The Effect of Reactant Concentrations and application in radiotherapy. In: Journal of Physics: Conference Series. Vol 1082. IOP Publishing; 2018:1-7. https://doi.org/10.1088/1742-6596/1082/1/012103
  • 29. Zulkifli ZA, Razak KA, Rahman WNWA. The effect of reaction temperature on the particle size of bismuth oxide nanoparticles synthesized via hydrothermal method. In: 3rd International Concerence on the Science and Engineering of Materials (ICoSEM 2017) AIP Conference Proceedings 1958. Vol 020007. American Institute of Physics; 2018:1-5. https://doi.org/10.1063/1.5034538
  • 30. Sisin NNT, Abdul Razak K, Zainal Abidin S, et al. Radiosensitization Effects by Bismuth Oxide Nanoparticles in Combination with Cisplatin for High Dose Rate Brachytherapy. Int J Nanomedicine. 2019;14:9941-9954. https://doi.org/10.2147/IJN.S228919
  • 31. Wahab NH, Din NAM, Lim YY, Jamil NIN, Mat NFC. Proapoptotic activities of Oroxylum indicum leave extract in HeLa cells. Asian Pac J Trop Biomed. 2019;9(8):339-345. https://doi.org/10.4103/2221-1691.262080
  • 32. Sisin NNT. Synergetic Radiosensitization Effects Of Bismuth Oxide Nanoparticles, Cisplatin And Baicalein-Rich Fraction From Oroxylum Indicum Combinations For Clinical Radiotherapy. Universiti Sains Malaysia, PhD thesis. Published online 2021
  • 33. Akagi T, Higashi A, Tsugami H, Sakamoto H, Masuda Y, Hishikawa Y. Ridge filter design for proton therapy at Hyogo Ion Beam Medical Center. Phys Med Biol. 2003;48:N301-312. https://doi.org/10.1088/0031-9155/48/22/n01
  • 34. Sisin NNT, Rashid RA, Abdullah R, et al. GafchromicTM EBT3 Film Measurements of Dose Enhancement Effects by Metallic Nanoparticles for 192 Ir Brachytherapy, Proton, Photon and Electron Radiotherapy. Radiation. 2022;2:130-148. https://doi.org/10.3390/radiation2010010
  • 35. Khan FM. Measurement of Ionizing Radiation. In: Khan's The Physics of Radiation Therapy. 5th ed.; 2014:76
  • 36. Hubbell JH, Seltzer SM. X-Ray Mass Attenuation Coefficients, NIST Standard Reference Database 126. https://doi.org/10.18434/T4D01F
  • 37. Narita N, Ito Y, Takabayashi T, et al. Suppression of SESN1 reduces cisplatin and hyperthermia resistance through increasing reactive oxygen species (ROS) in human maxillary cancer cells. Int J Hyperth. 2018;35(1):269-278. https://doi.org/10.1080/02656736.2018.1496282
  • 38. Wang R, Li H, Sun H. Bismuth: Environmental Pollution and Health Effects. Encycl Environ Heal. 2020;1:415-423. https://doi.org/10.1016%2FB978-0-12-409548-9.11870-6
  • 39. Shakibaie M, Forootanfar H, Ameri A, Adeli-Sardou M, Jafari M, Rahimi HR. Cytotoxicity of biologically synthesised bismuth nanoparticles against HT-29 cell line. IET Nanobiotechnology. 2018;12(5):653-657. https://doi.org/10.1049/iet-nbt.2017.0295
  • 40. Dinda B, Silsarma I, Dinda M, Rudrapaul P. Oroxylum indicum (L.) Kurz, an important Asian traditional medicine: From traditional uses to scientific data for its commercial exploitation. J Ethnopharmacol. 2015;161:255-278. https://doi.org/10.1016/j.jep.2014.12.027
  • 41. Patwardhan R. Amelioration of Ionizing Radiation Induced Cell Death in Lymphocytes by Baicalein. Homi Bhabha National Institute, PhD thesis. Published online 2015
  • 42. Figueroa D, Asaduzzaman M, Young F. Real time monitoring and quantification of reactive oxygen species in breast cancer cell line MCF-7 by 2′,7′–dichlorofluorescin diacetate (DCFDA) assay. J Pharmacol Toxicol Methods. 2018;94:26-33. https://doi.org/10.1016/j.vascn.2018.03.007
  • 43. Seo SJ, Jeon JK, Han SM, Kim JK. Reactive oxygen species-based measurement of the dependence of the Coulomb nanoradiator effect on proton energy and atomic Z value. Int J Radiat Biol. 2017;11:1239-1247. https://doi.org/10.1080/09553002.2017.1361556
  • 44. Altundal Y, Cifter G, Detappe A, et al. New potential for enhancing concomitant chemoradiotherapy with FDA approved concentrations of cisplatin via the photoelectric effect. Phys Medica. 2015;31(1):25-30. https://doi.org/10.1016/j.ejmp.2014.11.004
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4788b830-4d72-4419-a43b-73d0e86d205f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.