PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Controlling the movement of hexacopter along the intended route with engine failure

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article investigates the issue of controlling the movement of a hexacopter-type unmanned aerial vehicle around a route. The movement of the hexacopter is modeled as the motion of a rigid body, taking into account gravitational forces and aerodynamic resistance forces. The spatial orientation of the hexacopter is expressed using quaternions. The movement route is considered as a broken line consisting of straight-line segments, and parameters that control the hexacopter's flight on the considered straight-line segment of the route are determined when one of its engines fails. The mathematical rationale for how to control the operational engines to continue the hexacopter's movement as before in the event of an engine failure is provided.
Rocznik
Tom
Strony
149--160
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
  • Institute of Control Systems, Baku Engineering University, Baku, Azerbaijan
Bibliografia
  • 1. Alderete T.S. 1995. Simulator aero model implementation. NASA Ames Research Center, Moffett Field, California, 21.
  • 2. Bayramov A.A., A.B. Pashayev, E.N. Sabziev, M.M. Tatur, A. Konikov. 2021. „Model of navigation and control of unmanned ground vehicles used in agriculture”. In: Proceedings of the 2nd International Congress on „Applied Sciences”: 217-222. Karabagh, Azerbaijan, 8-10 November 2021.
  • 3. Massimo Cefalo, Josep M. Mirats-Tur. 2011. „A comprehensive dynamic model for class-1 tensegrity systems based on quaternions”. International Journal of Solids and Structures 48(5): 785-802.
  • 4. Aoki Yusuke, Asano Yuta, Honda Akihiko, Motaaka Norizumi, Hoshino Kenta, Ohtsuka Toshiyuki. 2021. „Nonlinear model predictive control for hexacopter with failed rotors based on quaternions – simulations and hardware experiments”. Mechanical Engineering Journal 8(5): 21-00204.
  • 5. Wen F.H., F.Y. Hsiao, J.K. Shiau. 2021. „Analysis and management of motor failures of hexacopter in hover”. Actuators 10(3): 48. MDPI. DOI: 10.3390/act10030048
  • 6. Cheon J.M., C.K. Kim, J.M. Lee, S. Kwon. 2006. „New Method for Detecting Failures of Power Converter Module in Control Rod Control System”. In: Proceedings of the 2006 IEEE International Symposium on „Industrial Electronics” 2: 1566-1570. Montreal, QC, Canada, 9-13 July 2006. IEEE. ISSN: 2163-5145.
  • 7. Contreras-Medina L.M., de Jesus Romero-Troncoso R., E. Cabal-Yepez, de Jesus Rangel-Magdaleno J., J.R. Millan-Almaraz. 2009. „FPGA-based multiple-channel vibration analyzer for industrial applications in induction motor failure detection”. In: Proceedings of the IEEE Transactions on „Instrumentation and Measurement” 59(1): 63-72. ISSN: 1557-9662.
  • 8. Hasan A., V. Tofterup, K. Jensen. 2019. „Model-based fail-safe module for autonomous multirotor UAVs with parachute systems”. In: 2019 International Conference on „Unmanned Aircraft Systems (ICUAS)”: 406-412. Atlanta, GA, USA, 11-14 June 2019. IEEE. ISSN: 2575-7296.
  • 9. Glowacz A. 2021. „Fault diagnosis of electric impact drills using thermal imaging”. Measurement 171(1-4): 108815. Elsevier BV. DOI: 10.1016/j.measurement.2020.108815.
  • 10. Lu P., E.J. van Kampen. 2015. „Active fault-tolerant control for quadrotors subjected to a complete rotor failure”. In: Proceedings of the 2015 IEEE/RSJ International Conference on „Intelligent Robots and Systems (IROS)”: 4698-4703. Hamburg, Germany, 28 September 2015. IEEE. ISSN: 978-1-4799-9994-1.
  • 11. Merheb A.R., H. Noura, F. Bateman. 2014. „A novel emergency controller for quadrotor UAVs”. In: Proceedings of the 2014 IEEE Conference on „Control Applications (CCA)”: 747-752. Juan Les Antibes, France, 8-10 October 2014. IEEE. ISBN: 978-1-4799-7409-2.
  • 12. Nagarjuna K., G.R. Suresh. 2015. „Design of effective landing mechanism for fully autonomous Unmanned Aerial Vehicle”. In: Proceedings of the 2015 3rd International Conference on „Signal Processing, Communication and Networking (ICSCN)”: 1-6, Chennai, India, 26-28 March 2015. IEEE. ISBN: 978-1-4673-6823-0.
  • 13. Lee S.J., I. Jang, H.J. Kim. 2020. „Fail-safe flight of a fully-actuated quadrotor in a single motor failure”. IEEE Robotics and Automation Letters 5(4): 6403-6410. DOI: 10.1109/LRA.2020.3013862. ISSN: 2377-3766.
  • 14. Wang B., Y. Zhang. 2017. „An adaptive fault-tolerant sliding mode control allocation scheme for multirotor helicopter subject to simultaneous actuator faults”. IEEE Transactions on Industrial Electronics 65(5): 4227-4236.
  • 15. Großekatthöfer K., Z. Yoon. 2012. „Introduction into quaternions for spacecraft attitude representation”. Technical University of Berlin. Berlin, Germany.
  • 16. Tzoumanikas D., Q. Yan, S. Leutenegger. 2020. „Nonlinear MPC with motor failure identification and recovery for safe and aggressive multicopter flight”. In: Proceedings of the 2020 IEEE International Conference on „Robotics and Automation (ICRA)”: 8538-8544. Paris, France, 31 May 2020. IEEE. DOI: 10.1109/ICRA40945.2020.9196690 ISSN 2577-087X.
  • 17. Artale V., C.L.R. Milazzo, A. Ricciardello. 2013. „Mathematical modeling of hexacopter”. Applied mathematical sciences 7(97): 4805-4811.
  • 18. Alaimo A., V. Artale, C.L.R. Milazzo, A. Ricciardello. 2014. „PID controller applied to hexacopter flight”. Journal of Intelligent & Robotic Systems 73: 261-270. DOI: 10.1007/s10846-013-9947-y.
  • 19. Амелькин Н.И. 2010. „Динамика твердого тела”. Учебное пособие. М.: МФТИ: 80 с. [In Russian: Amelkin N.I. 2010. „Dynamika tverdogo tela”. Uchebnoe posobie. Moscow, MPhTI, 80 p.] ISBN: 978-5-7417-0347-2.
  • 20. Nisar B., M. Kamel, R. Siegwart. 2018. „NMPC for multicopter's trajectory tracking using modified rodrigues parameters”. In: Proceedings of the 2018 IEEE Conference on „Control Technology and Applications (CCTA)”: 683-689. Copenhagen, Denmark, 21-24 August 2018. IEEE. ISBN: 978-1-5386-7698-1.
  • 21. Bertsekas D.P. 2014. „Constrained optimization and Lagrange multiplier methods”. Athena Scientific. ISBN: 1-886529--04-3.
  • 22. Lange K. 2013. „Karush-Kuhn-Tucker Theory”. In: Optimization. Springer Texts in Statistics: 95. Springer, New York, NY. DOI: 10.1007/978-1-4614-5838-8_5.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4788299d-7a29-416b-b1f9-bccc0c2a9c1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.