PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrogen sensor based on field effect transistor with C–Pd layer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
ISFET (Ion Sensitive Field Effect Transistors) microsensors are widely used for pH measurements as well as analytical and biomedical applications. At the same time, ISFET is a good candidate for testing various materials for their applications in sensitive membranes. For example, hydrogen sensitive carbonaceous films containing Pd nanocrystallites (C-Pd) make this material very interesting for sensor applications. A cost effective silicon technology was selected to fabricate n-channel transistors. The structures were coupled to specially designed double-sided PCB (Printed Circuit Board) holder. The holder enables assembly of the structure as part of an automatic stand. The last step of production of MIS structures was deposition of the C-Pd layer. The C-Pd films were fabricated by the Physical Vapor Deposition (PVD) method in which C60 and palladium acetate were evaporated. Electrical resistance of structures with C-Pd films was measured during their interaction with hydrogen. Finally, a new type of highly sensitive FET hydrogen sensor with C-Pd layer was demonstrated and characterized.
Słowa kluczowe
Rocznik
Strony
313--321
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
autor
  • Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw, Poland
  • Łukasiewicz Research Network Tele- & Radio Research Institute, Ratuszowa 11, 03-450 Warsaw, Poland
  • Łukasiewicz Research Network Tele- & Radio Research Institute, Ratuszowa 11, 03-450 Warsaw, Poland
  • Łukasiewicz Research Network Tele- & Radio Research Institute, Ratuszowa 11, 03-450 Warsaw, Poland
autor
  • Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw, Poland
Bibliografia
  • [1] Firek, P., Waśkiewicz, M., Stonio, B., Szmidt, J. (2015). Properties of AIN thin films deposited by means of magnetron sputtering for ISFET applications. Materials Science-Poland, 33(4), 669-676.
  • [2] Firek, P., Cichomski, M., Waśkiewicz, M., Piwoński, I., Kisielewska, A. (2018). ISFET structures with chemically modified membrane for bovine serum albumin detection. Circuit World, 44(1), 45-50.
  • [3] Wagner, T., Maris, R.J., Ackermann, H.-J., Otto, R., Beging, S., Poghossian, A., Schöning, M.J. (2007). Handheld measurement device for field-effect sensor structures: Practical evaluation and limitations. Sensors and Actuators B: Chemical. 127(1), 217-223.
  • [4] Waleed Shinwari, M., Jamal Deen, M., Landheer, D. (2007). Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design. Microelectronics Reliability, 47(12), 2025-2057.
  • [5] Yakimova, R., Steinhoff, G., Petoral, R.M., Vahlberg, C., Khranovskyy, V., Yazdi, G.R., Uvdal, K., Lloyd Spetz, A. (2007). Novel material concepts of transducers for chemical and biosensors. Biosensors and Bioelectronics, 22(12), 2780-2785.
  • [6] Bergveld, P. (2003). Thirty years of ISFETOLOGY What happened in the past 30 years and what may happen in the next 30 years. Sensors and Actuators B, 88(1), 1-20.
  • [7] Firek, P., Werbowy, A., Śmietana, M.J. (2018). Technology of field effect transistor with DLC layer in gate area. Proc. of SPIE: Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, T. 10808, 1-9.
  • [8] Dipalo, M., Pietzka, C., Denisenko, A., El-Hajj, H., Kohn, E. (2008). O-terminated nano-diamond ISFET for applications in harsh environment. Diamond and Related Materials, (7-10), 1241-1247.
  • [9] Kondracka, K., Firek, P., Caban, P., Przewłoka, A., Szmidt, J. (2019). Technology and characterization of ISFET structures with graphene membrane. Proc. of SPIE: Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, T. 11176, 1-7.
  • [10] Graham T. (1869). On the relation of Hydrogen to Palladium. Proc. of the Royal Society, 17, 212-220.
  • [11] Cabrera, A.L., Aguayo-Soto, R. (1997). Hydrogen absorption in palladium films sensed by changes in their resistivity. Catalysis Letters, 45, 79-83.
  • [12] Im, Y.H., Lee, C., Vasquez, R.P., Bangar, M.A., Myung, N.V., Menke, E.J., Penner, R.M., Yun, M.H. (2006). Investigation of a single Pd nanowire for use as a hydrogen sensor. Small, 2, 356-358.
  • [13] Walter, E.C., Favier, F., Penner, R.M. (2002). Palladium mesowire arrays for fast hydrogen sensors and hydrogen-actuated switches. Analytical Chemistry, 74, 1546–1553.
  • [14] Mubeen, S., Zhang, T., Yoo, B., Deshusses, M.A., Myung, M.V. (2007). Palladium nanoparticles decorated single-walled carbon nanotube hydrogen sensor. The Journal of Physical Chemistry C, 111, 6321-6327.
  • [15] Rymarczyk J., Czerwosz, E., Kozłowski, M., Dłużewski. P., Kowalski, W. (2014). The influence of technological PVD process parameters on the topography, crystal and molecular structure of nanocomposite films containing palladium nanograins. Polish Journal of Chemical Technology, 16(3), 18-24.
  • [16] Rymarczyk J., Kołodziejczyk, Ł., Czerwosz, E. (2015). Topography, mechanical and tribological properties of nanocomposite carbon-palladium films. Open Physics, 13, 72-77.
  • [17] Kozłowski M., Radomska, J., Wronka, H., Czerwosz, E., Firek, P., Sobczak, K., Dłużewski, P. (2013). Annealing time effects on the surface morphology of C-Pd films prepared on silicon covered with SiO2. Optica Applicata, 43(1), 81-89.
  • [18] Eisele, I., Doll, T., Burgmair, M. (2001). Low power gas detection with FET sensors. Sensors and Actuators B: Chemical, 78(1-2), 19-25.
  • [19] Lundstrom, K., Shivaraman, M., Svensson, C. (1975). A Hydrogen-sensitive Pd-gate MOS transistor. Journal of Applied Physics, 46(9), 3876-3881.
  • [20] Dwivedi, D., Dwivedi, R., Srivastava, S.K. (2000). Sensing properties of palladium-gate MOS (Pd-MOS) hydrogen sensor-based on plasma grown silicon dioxide. Sensors and Actuators B: Chemical, 71(3), 161-168.
  • [21] Scharnagl, K., Annamalai, K., Burgmair, M., Zimmer, M., Doll, T., Eisele, I. (2001). Low temperature hydrogen detection at high concentrations: Comparison of platinum and iridium. Sensors and Actuators B: Chemical, 80(3), 163-168.
  • [22] Ndaya, C., Javahiraly, N., Brioude, Ar. (2019). Recent Advances in Palladium Nanoparticles-Based Hydrogen Sensors for Leak Detection. Sensors, 19(20).
  • [23] Choi, B., Ahn, J.-H., Lee, J., Yoon, J., Lee, J., Jeon, M., Kim, D., Kim, T., Park, I., Choi, S.-J. (2015). A bottom-gate silicon nanowire field-effect transistor with functionalized palladium nanoparticles for hydrogen gas sensors. Solid-State Electronics, 114, 76-79.
  • [24] Lundstrom, I. (1981). Hydrogen sensitive MOS structure: Part 1. Principles and applications. Sensorand Actuators, 1, 403-426.
  • [25] Formoso, M.A., Maclay, G.J. (1990). The effect of hydrogen and carbon monoxide on the interface state density in MOS gas sensors with ultra-thin palladium gates. Sensors and Actuators B: Chemical, 2(1), 11-12.
  • [26] Rymarczyk, J., Kamińska, A., Krawczyk, S. (2014). Carbon-palladium films as gas sensors (hydrogen, ammonia, methane). Proc. SPIE 9290, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, 92901E.
Uwagi
EN
1. This work was supported by the statutory work funding.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47873754-e826-4d48-95ea-285f008b1c73
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.