Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
4th Jagiellonian Symposium on Advances in Particle Physics and Medicine, Krakow, 10-15 July 2022
Języki publikacji
Abstrakty
Cascade nuclides emit two or more gamma rays successively through an intermediate state. The coincidence detection of cascade gamma rays provides several advantages in gamma-ray imaging. In this review article, three applications of the double photon coincidence method are reviewed. Double-photon emission imaging with mechanical collimators and Compton double-photon emission imaging can identify radioactive source positions with their angular-resolving detectors, and reduce the crosstalk between nuclides. In addition, a novel method of coincidence Compton imaging is proposed by taking coincidence detection between a Compton event and a photopeak events. Although this type of coincidence Compton imaging cannot specify the location, it can be useful in multinuclide Compton imaging.
Czasopismo
Rocznik
Tom
Strony
120--126
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
autor
- Unit of Synergetic Studies for Space, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto, Japan
autor
- Department of Bioengineering, The University of Tokyo, Tokyo, Japan
autor
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
Bibliografia
- [1] Ter-Pogossian, M. M., et al. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology 1975;114:89-98.
- [2] Ollinger, J. M., and Fessler, J. A. Positron-emission tomography. IEEE Signal Processing Mag 1997;14:43-55.
- [3] Knoll, G. F. Single-photon emission computed tomography. Proceedings of the IEEE. 1983;71:320-329.
- [4] Holly, T. A., Abbott, B. G., Al-Mallah, M., et al. Single photon-emission computed tomography. J. Nucl. Cardiol. 2010;17:941-973.
- [5] Mullani, N. A., Ficke, D. C., Hartz, R., Markham, J., and Wong, G. System design of fast PET scanners utilizing time-of-flight. IEEE Trans. On Nucl. Sci. 1981; 28:104-108.
- [6] Conti, M. State of the art and challenges of time-offlight PET. Physica Medica. 2009;25:1-11.
- [7] Spanoudaki, V. C., and Levin, C. S. Photo-detectors for time of flight positron emission tomography (ToF-PET). Sensors. 2010;10:10484-10505.
- [8] Conti, M., and Bendriem, B. The new opportunities for high time resolution clinical TOF PET. Clin. Trans. Imaging. 2019;7:139-147.
- [9] Casey, M. E., and Osborne, D. R. Siemens biograph vision 600. In Advances in PET. 2020;71-91.
- [10] Kwon, S. I., Ota, R., Berg, E., et al. Ultrafast timing enables reconstruction-free positron emission imaging. Nature Photonics. 2021;15:914-918.
- [11] Helmers, H., Von Boetticher, H., and SchmitzFeuerhake, I. Scanner performance to overcome efficiency problems in three dimensional scintigraphy. Phys. Med. Bio. 1979;24:1025.
- [12] Von Boetticher, H., Helmers, and Muschol. E. M. Contributions to depth discrimination γ- γ-coincidence methods in scintigraphy. Phys. Med. Bio. 1979;24:571.
- [13] Von Boetticher, H., Helmers, H., Schreiber, P., and Schmitz-Feuerhake, I. Advances in γ- γ-coincidence scintigraphy with the scintillation camera. Phys. Med. Bio. 1982;27:1495.
- [14] Hart, H. E., and Rudin, S. Three-dimensional imaging of multimillimeter sized cold lesions by focusing collimator coincidence scannign (FCCS). IEEE. Trans. Biomed. Eng. 1977;169-177.
- [15] Chung, V., Chak, K. C., Zacuto. P., and Hart, H. E. Multiple photon coincidence tomography. In Seminars in Nuclear Medicine. 1980;10:345-354.
- [16] Shimazoe, K., Uenomachi, M., Mizumachi, Y., et al. Double photon emission coincidence imaging using GAGG-SiPM pixel detectors. J. Instrum. 2017;12:C12055.
- [17] Uenomachi, M., Shimazoe, K., Ogane, K., and Takahashi, H. Simultaneous multi-nuclide imaging via double-photon coincidence method with parallel hole collimators. Sci. Rep. 2021;11:13330.
- [18] Pahlka, R. B., Kappadath, S. C., and Mawlawi, O. R. A Monte Carlo simulation of coincidence detection and imaging of gamma-ray cascades with a scintillation camera. Biomed. Phys. Eng. Express. 2018;4:055012.
- [19] Liu, X., Liu, H., Cheng, L., et al. A 3-dimensional stationary cascade gamma-ray coincidence imager. Phys. Med. Bio. 2021;66:225001.
- [20] Kamada, K., Kurosawa, S., Prusa, P., et al. Cz grown 2-in. size Ce: Cd3(Al, Ga)5O12 single crystal; relationship between Al, Ga site occupancy and scintillation properties. Opt. Mater. 2014;36:1942-1945.
- [21] Kamada, K., Shoji, Y., Kochurikhin, V., et al. Growth and scintillation properties of 3 in. diameter Ce doped Gd3Ga3Al2O12 scintillation single crystal. J. Cryst. Growth. 2016;452;81-84.
- [22] Shimazoe, K., Takahashi, H., Shi, B., et al. Dynamic time over threshold method. IEEE Trans. Nucl. Sci. 2012;59:3213-3217.
- [23] Orita, T., Shimazoe, K., Takahashi, H. The dynamic time-over-threshold method for multi-channel APD based gamma-ray detectors. Nucl. Insrum. Meth. A. 2015;775:154-161.
- [24] Garkavij, M., Nickel, M, Sjögreen-Gleisner, K., et al. 177Lu‐[DOTA0, Tyr3] octreotate therapy in patients with disseminated neuroendocrine tumors: Analysis of dosimetry with impact on future therapeutic strategy. Cancer. 2010;116:1084-1092.
- [25] Brabander, T., Van der Zwan, W. A., Teunissen, J. J., et al. Long-Term Efficacy, Survival, and Safety of [177LuDOTA0, Tyr3] octreotate in Patients with Gastroenteropancreatic and Bronchial Neuroendocrine TumorsEfficacy, Survival, and Toxicity after 177LuDOTATATE. Clin. Cancer Res. 2017;23:4617-4624.
- [26] Mittra, E. S. Neuroendocrine tumor therapy: 177LuDOTATATE. Am. J. Roentgenol. 2018;211:278-285.
- [27] Jaszczak, R. J., Greer, K. L., Floyd Jr, C. E., et al. Improved SPECT quantification using compensation for scattered photons. J. Nucl. Med. 1984;25:893-900.
- [28] Tsuji, A., Kojima, A., Matsumoto, M., et al. A new method for crosstalk correction in simultaneous dualisotope myocardial imaging with Tl-201 and I-123. Ann. Nucl. Med. 1999;13:317-323.
- [29] Ichihara, T., Ogawa, K., Motomura, N., et al. Compton scatter compensation using the triple-energy window method for single-and dual-isotope SPECT. J. Nucl. Med. 1993;34:2216-2221.
- [30] Ogawa, K. Simulation study of triple-energy-window scatter correction in combined Tl-201, Tc-99m SPECT. Ann. Nucl. Med. 1994;8:277-281.
- [31] Krimmer, J., Ley, J. L., Abellan, C., et al. Development of a Compton camera for medical applications based on silicon strip and scintillation detectors. Nucl. Instrum. Meth. A. 2015;787:98-101.
- [32] Takeda, S. Aono, H., Okuyama, S., et al. Experimental results of the gamma-ray imaging capability with a Si/CdTe semiconductor Compton camera. IEEE Trans. Nucl. Sci. 2009;56:783-790.
- [33] Kishimoto, A., Kataoka, J., Koide, A., et al. Development of a compact scintillator-based highresolution Compton camera for molecular imaging. Nucl. Instrum. Meth. A. 2017;845:656-659.
- [34] McClesky, M., Kaye, W., Mackin, D. S., et al. Evaluation of a multistage CdZnTe Compton camera for prompt γ imaging for proton therapy. Nucl. Instrum. Meth. A. 2015;785:163-169.
- [35] Muñoz, E., Barrio, J., Etxebeste, A., et al. Performance evaluation of MACACO: a multilayer Compton camera. Phys. Med. Bio. 2017;62:7321.
- [36] Roellinghoff, F., Richard, M. H., Chevallier, M., et al. Design of a Compton camera for 3D prompt-γ imaging during ion beam therapy. Nucl. Instrum. Meth. A. 2011;648:S20-S23.
- [37] Todd, R. W., Nightingale, J. M., and Everett, D. B. A proposed γ camera. Nature. 1974;251:132-134.
- [38] Andreyev, A., Sitek, A., and Celler, A. Reconstructed image spatial resolution of multiple coincidences Compton imager. IEEE Trans. Nucl. Sci. 2010;57:151-159.
- [39] Andreyev, A., Sitek, A., and Celler, A. Study on the spatial resolution of single and multiple coincidences Compton camera. 2012;59:1920-1926.
- [40] Yoshihara, Y., Shimazoe, K., Mizumachi, Y., Takahashi, H. Evaluation of double photon coincidence Compton imaging method with GEANT4 simulation. Nucl. Instrum. Med. A. 2017;873:51-55.
- [41] Uenomachi, M., Mizumachi, Y., Yoshihara, Y., et al. Double photon emission coincidence imaging with GAGG-SiPM Compton camera. Nucl. Instrum. Med. A. 2020;954:161682.
- [42] Orita, T., Yabu, G., Yoneda, H., et al. Double-photon emission imaging with high-resolution Si/CdTe Compton cameras. IEEE Trans. Nucl. Sci. 2021;68:2279-2285.
- [43] Uenomachi, M., Shimazoe, K., and Takahashi, H. Double photon coincidence crosstalk reduction method for multi-nuclide Compton imaging. J. Instrum. 2022;17:P04001.
- [44] Shimazoe, K., Uenomachi, M., and Takahashi, H. Imaging and sensing of pH and chemical state with nuclear-spin-correlated cascade gamma rays via radioactive tracer. Commun. Phys. 2022;5:1-8.
- [45] Sensui F., et al. Measurement of Angular Correlation Changes in Double-Photon Emission Nuclides Using Ultrasound Irradiation. J. Instrum. 2022;accepted.
- [46] Moskal, P., Dulski, K., Chug, N., et al. Positronium imaging with the novel multiphoton PET scanner. Sci. Adv. 2021;7:eabh4394.
- [47] Moskal, P., Gajos, A., Mohammed, M., et al. Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography. Nat. Commun. 2021;12:5658.
- [48] Moskal, P., and Stepien, E. Prospects and clinical perspectives of total-body PET imaging using plastic scintillators. PET clinics, 2020;15:439-452.
Uwagi
Opublikowano przez Sciendo. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-477f67e9-4f39-4a13-b187-ce62118bb26e