PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A double photon coincidence detection method for medical gamma-ray imaging

Identyfikatory
Warianty tytułu
Konferencja
4th Jagiellonian Symposium on Advances in Particle Physics and Medicine, Krakow, 10-15 July 2022
Języki publikacji
EN
Abstrakty
EN
Cascade nuclides emit two or more gamma rays successively through an intermediate state. The coincidence detection of cascade gamma rays provides several advantages in gamma-ray imaging. In this review article, three applications of the double photon coincidence method are reviewed. Double-photon emission imaging with mechanical collimators and Compton double-photon emission imaging can identify radioactive source positions with their angular-resolving detectors, and reduce the crosstalk between nuclides. In addition, a novel method of coincidence Compton imaging is proposed by taking coincidence detection between a Compton event and a photopeak events. Although this type of coincidence Compton imaging cannot specify the location, it can be useful in multinuclide Compton imaging.
Rocznik
Strony
120--126
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
  • Unit of Synergetic Studies for Space, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto, Japan
  • Department of Bioengineering, The University of Tokyo, Tokyo, Japan
  • Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
Bibliografia
  • [1] Ter-Pogossian, M. M., et al. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology 1975;114:89-98.
  • [2] Ollinger, J. M., and Fessler, J. A. Positron-emission tomography. IEEE Signal Processing Mag 1997;14:43-55.
  • [3] Knoll, G. F. Single-photon emission computed tomography. Proceedings of the IEEE. 1983;71:320-329.
  • [4] Holly, T. A., Abbott, B. G., Al-Mallah, M., et al. Single photon-emission computed tomography. J. Nucl. Cardiol. 2010;17:941-973.
  • [5] Mullani, N. A., Ficke, D. C., Hartz, R., Markham, J., and Wong, G. System design of fast PET scanners utilizing time-of-flight. IEEE Trans. On Nucl. Sci. 1981; 28:104-108.
  • [6] Conti, M. State of the art and challenges of time-offlight PET. Physica Medica. 2009;25:1-11.
  • [7] Spanoudaki, V. C., and Levin, C. S. Photo-detectors for time of flight positron emission tomography (ToF-PET). Sensors. 2010;10:10484-10505.
  • [8] Conti, M., and Bendriem, B. The new opportunities for high time resolution clinical TOF PET. Clin. Trans. Imaging. 2019;7:139-147.
  • [9] Casey, M. E., and Osborne, D. R. Siemens biograph vision 600. In Advances in PET. 2020;71-91.
  • [10] Kwon, S. I., Ota, R., Berg, E., et al. Ultrafast timing enables reconstruction-free positron emission imaging. Nature Photonics. 2021;15:914-918.
  • [11] Helmers, H., Von Boetticher, H., and SchmitzFeuerhake, I. Scanner performance to overcome efficiency problems in three dimensional scintigraphy. Phys. Med. Bio. 1979;24:1025.
  • [12] Von Boetticher, H., Helmers, and Muschol. E. M. Contributions to depth discrimination γ- γ-coincidence methods in scintigraphy. Phys. Med. Bio. 1979;24:571.
  • [13] Von Boetticher, H., Helmers, H., Schreiber, P., and Schmitz-Feuerhake, I. Advances in γ- γ-coincidence scintigraphy with the scintillation camera. Phys. Med. Bio. 1982;27:1495.
  • [14] Hart, H. E., and Rudin, S. Three-dimensional imaging of multimillimeter sized cold lesions by focusing collimator coincidence scannign (FCCS). IEEE. Trans. Biomed. Eng. 1977;169-177.
  • [15] Chung, V., Chak, K. C., Zacuto. P., and Hart, H. E. Multiple photon coincidence tomography. In Seminars in Nuclear Medicine. 1980;10:345-354.
  • [16] Shimazoe, K., Uenomachi, M., Mizumachi, Y., et al. Double photon emission coincidence imaging using GAGG-SiPM pixel detectors. J. Instrum. 2017;12:C12055.
  • [17] Uenomachi, M., Shimazoe, K., Ogane, K., and Takahashi, H. Simultaneous multi-nuclide imaging via double-photon coincidence method with parallel hole collimators. Sci. Rep. 2021;11:13330.
  • [18] Pahlka, R. B., Kappadath, S. C., and Mawlawi, O. R. A Monte Carlo simulation of coincidence detection and imaging of gamma-ray cascades with a scintillation camera. Biomed. Phys. Eng. Express. 2018;4:055012.
  • [19] Liu, X., Liu, H., Cheng, L., et al. A 3-dimensional stationary cascade gamma-ray coincidence imager. Phys. Med. Bio. 2021;66:225001.
  • [20] Kamada, K., Kurosawa, S., Prusa, P., et al. Cz grown 2-in. size Ce: Cd3(Al, Ga)5O12 single crystal; relationship between Al, Ga site occupancy and scintillation properties. Opt. Mater. 2014;36:1942-1945.
  • [21] Kamada, K., Shoji, Y., Kochurikhin, V., et al. Growth and scintillation properties of 3 in. diameter Ce doped Gd3Ga3Al2O12 scintillation single crystal. J. Cryst. Growth. 2016;452;81-84.
  • [22] Shimazoe, K., Takahashi, H., Shi, B., et al. Dynamic time over threshold method. IEEE Trans. Nucl. Sci. 2012;59:3213-3217.
  • [23] Orita, T., Shimazoe, K., Takahashi, H. The dynamic time-over-threshold method for multi-channel APD based gamma-ray detectors. Nucl. Insrum. Meth. A. 2015;775:154-161.
  • [24] Garkavij, M., Nickel, M, Sjögreen-Gleisner, K., et al. 177Lu‐[DOTA0, Tyr3] octreotate therapy in patients with disseminated neuroendocrine tumors: Analysis of dosimetry with impact on future therapeutic strategy. Cancer. 2010;116:1084-1092.
  • [25] Brabander, T., Van der Zwan, W. A., Teunissen, J. J., et al. Long-Term Efficacy, Survival, and Safety of [177LuDOTA0, Tyr3] octreotate in Patients with Gastroenteropancreatic and Bronchial Neuroendocrine TumorsEfficacy, Survival, and Toxicity after 177LuDOTATATE. Clin. Cancer Res. 2017;23:4617-4624.
  • [26] Mittra, E. S. Neuroendocrine tumor therapy: 177LuDOTATATE. Am. J. Roentgenol. 2018;211:278-285.
  • [27] Jaszczak, R. J., Greer, K. L., Floyd Jr, C. E., et al. Improved SPECT quantification using compensation for scattered photons. J. Nucl. Med. 1984;25:893-900.
  • [28] Tsuji, A., Kojima, A., Matsumoto, M., et al. A new method for crosstalk correction in simultaneous dualisotope myocardial imaging with Tl-201 and I-123. Ann. Nucl. Med. 1999;13:317-323.
  • [29] Ichihara, T., Ogawa, K., Motomura, N., et al. Compton scatter compensation using the triple-energy window method for single-and dual-isotope SPECT. J. Nucl. Med. 1993;34:2216-2221.
  • [30] Ogawa, K. Simulation study of triple-energy-window scatter correction in combined Tl-201, Tc-99m SPECT. Ann. Nucl. Med. 1994;8:277-281.
  • [31] Krimmer, J., Ley, J. L., Abellan, C., et al. Development of a Compton camera for medical applications based on silicon strip and scintillation detectors. Nucl. Instrum. Meth. A. 2015;787:98-101.
  • [32] Takeda, S. Aono, H., Okuyama, S., et al. Experimental results of the gamma-ray imaging capability with a Si/CdTe semiconductor Compton camera. IEEE Trans. Nucl. Sci. 2009;56:783-790.
  • [33] Kishimoto, A., Kataoka, J., Koide, A., et al. Development of a compact scintillator-based highresolution Compton camera for molecular imaging. Nucl. Instrum. Meth. A. 2017;845:656-659.
  • [34] McClesky, M., Kaye, W., Mackin, D. S., et al. Evaluation of a multistage CdZnTe Compton camera for prompt γ imaging for proton therapy. Nucl. Instrum. Meth. A. 2015;785:163-169.
  • [35] Muñoz, E., Barrio, J., Etxebeste, A., et al. Performance evaluation of MACACO: a multilayer Compton camera. Phys. Med. Bio. 2017;62:7321.
  • [36] Roellinghoff, F., Richard, M. H., Chevallier, M., et al. Design of a Compton camera for 3D prompt-γ imaging during ion beam therapy. Nucl. Instrum. Meth. A. 2011;648:S20-S23.
  • [37] Todd, R. W., Nightingale, J. M., and Everett, D. B. A proposed γ camera. Nature. 1974;251:132-134.
  • [38] Andreyev, A., Sitek, A., and Celler, A. Reconstructed image spatial resolution of multiple coincidences Compton imager. IEEE Trans. Nucl. Sci. 2010;57:151-159.
  • [39] Andreyev, A., Sitek, A., and Celler, A. Study on the spatial resolution of single and multiple coincidences Compton camera. 2012;59:1920-1926.
  • [40] Yoshihara, Y., Shimazoe, K., Mizumachi, Y., Takahashi, H. Evaluation of double photon coincidence Compton imaging method with GEANT4 simulation. Nucl. Instrum. Med. A. 2017;873:51-55.
  • [41] Uenomachi, M., Mizumachi, Y., Yoshihara, Y., et al. Double photon emission coincidence imaging with GAGG-SiPM Compton camera. Nucl. Instrum. Med. A. 2020;954:161682.
  • [42] Orita, T., Yabu, G., Yoneda, H., et al. Double-photon emission imaging with high-resolution Si/CdTe Compton cameras. IEEE Trans. Nucl. Sci. 2021;68:2279-2285.
  • [43] Uenomachi, M., Shimazoe, K., and Takahashi, H. Double photon coincidence crosstalk reduction method for multi-nuclide Compton imaging. J. Instrum. 2022;17:P04001.
  • [44] Shimazoe, K., Uenomachi, M., and Takahashi, H. Imaging and sensing of pH and chemical state with nuclear-spin-correlated cascade gamma rays via radioactive tracer. Commun. Phys. 2022;5:1-8.
  • [45] Sensui F., et al. Measurement of Angular Correlation Changes in Double-Photon Emission Nuclides Using Ultrasound Irradiation. J. Instrum. 2022;accepted.
  • [46] Moskal, P., Dulski, K., Chug, N., et al. Positronium imaging with the novel multiphoton PET scanner. Sci. Adv. 2021;7:eabh4394.
  • [47] Moskal, P., Gajos, A., Mohammed, M., et al. Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography. Nat. Commun. 2021;12:5658.
  • [48] Moskal, P., and Stepien, E. Prospects and clinical perspectives of total-body PET imaging using plastic scintillators. PET clinics, 2020;15:439-452.
Uwagi
Opublikowano przez Sciendo. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-477f67e9-4f39-4a13-b187-ce62118bb26e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.