PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Benzen i metan jako wzorce przesunięcia chemicznego 1 H I 13 C NMR w obliczeniach teoretycznych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Benzene and methane as a and 13 H I 13 C NMR chemical shift references in theoretical calculations
Języki publikacji
PL
Abstrakty
EN
NMR spectroscopy belongs to the most versatile techniques used in chemical laboratory for testing the presence of various compounds and elucidation of their structure. In case of more complex natural products chemical intuition and experience applied to analysis of experimental spectra is often supported by theoretical modeling of NMR spectra. However, theoretical predictions should be reliable and the errors associated with the approximations inherent to the existing methods minimized. In this respect, systematic errors, present in calculation of isotropic nuclear magnetic shieldings of the studied molecule need to be minimized. Conversion of nuclear shieldings of the studied molecule to the corresponding chemical shifts is performed by using a calculated reference molecule. This way systematic errors partly cancel and the remaining inaccuracies are efficiently decreased by using a properly selected theoretical reference molecule. In this work we demonstrate the impact of calculation method (selected density functional) and basis set on the predicted isotropic nuclear magnetic shieldings of free benzene and methane in vacuum and in popular solvents using a simple PCM approach. We propose the use of B3LYP, OPBE density functionals and recently designed xOPBE one in combination with Pople’s and Dunning’s basis sets, as well as with the modified STO-3G one. The new, STO(1M)-3G basis set was designed by Leszczyński and co-workers for efficient prediction of 13C NMR parameters in large organic molecules. Two molecules were selected to demonstrate the performance of GIAO B3LYP, OPBE and xOPBE for prediction of 1H and 13C NMR chemical shifts in vacuum and solution in comparison with available experimental data.
Rocznik
Strony
609--627
Opis fizyczny
Bibliogr. 57 poz., tab., wykr.
Twórcy
  • Uniwersytet Opolski, Wydział Chemii, ul. Oleska 48, 45-052 Opole
autor
  • Uniwersytet Opolski, Wydział Chemii, ul. Oleska 48, 45-052 Opole
autor
  • Uniwersytet Opolski, Wydział Chemii, ul. Oleska 48, 45-052 Opole
  • Uniwersytet Opolski, Wydział Chemii, ul. Oleska 48, 45-052 Opole
  • Uniwersytet Opolski, Wydział Chemii, ul. Oleska 48, 45-052 Opole
Bibliografia
  • [1] J.A. Pople, W.G. Schneider, H.J. Bernstein, High-resolution Nuclear Magnetic Resonance. McGraw-Hill, New York, 1959.
  • [2] G.P. Schmidt, M.F. Reiser, A. Baur-Melnyk, Skeletal Radiology, 2007, 36, 1109.
  • [3] A. Dappert, R.S. Guenther, S. Peyrard, In-vivo magnetic resonance spectroscopy. Springer-Verlag, Berlin, 1992.
  • [4] A. Derome, Modern NMR Techniques for Chemistry Research. Pergamon Pr; 1st edition, 1987.
  • [5] E. Breitmaier, W. Voelter, Carbon-13 NMR Spectroscopy: High-Resolution Methods and Applications in Organic Chemistry and Biochemistry. VCH, New York, 1987.
  • [6] F. Jensen, Introduction to Computational Chemistry. John Wiley and Sons, Chichester, England, 1999.
  • [7] J.B. Foresman, A. Frisch, Exploring Chemistry with Electronic Structure Methods; Ed. Second edn. Gaussian Inc, Pittsburg, PA, 1996.
  • [8] P. Hohenberg, W. Kohn, Phys. Rev., 1964, 136, B864.
  • [9] W. Kohn, L.J. Sham, Phys. Rev., 1965, 140, A1133.
  • [10] V. Barone, M. Cossi, J. Tomasi, J. Comp. Chem., 1998, 19, 404.
  • [11] J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev., 2005, 105, 2999.
  • [12] F. London, J. Phys. Radium (Paris), 1937, 8, 397.
  • [13] R. Ditchfield, Mol. Phys., 1974, 27, 789.
  • [14] K. Wolinski, J.F. Hinton, P. Pulay, J. Am. Chem. Soc., 1990, 112, 8251.
  • [15] T. Helgaker, M. Jaszunski, K. Ruud, Chem. Rev., 1999, 99, 293.
  • [16] N.F. Ramsey, Phys. Rev., 1950, 78, 699.
  • [17] M.R. Baker, C.H. Anderson, N.F. Ramsey, Phys. Rev., 1964, 133, A1533.
  • [18] I. Alkorta, J. Elguero, Struct. Chem., 2003, 14, 377.
  • [19] R.B. Nazarski, P. Wałejko, S. Witkowski, Org. Biomol. Chem., 2016, 14, 3142.
  • [20] R.B. Nazarski, Tetraazacyclotetradecane species as models of the polyazacrown macrocycles: Molecular structure and reorganizations in aqueous media (pH 0-14) as probed by NMR spectroscopy and computational methods - problems and solutions, In: D.W. Fitzpatrick, H.J. Ulrich (Eds.), Macrocyclic chemistry: new research developments, Nova Science Publishers, Inc., New York, 2010, pp. 1-50.
  • [21] A.M. Sarotti, S.C. Pellegrinet, J. Org. Chem., 2009, 74, 7254.
  • [22] M. Jaszuński, A. AntuSek, P. Garbacz, К. Jackowski, W. Makulski, M. Wilczek, Prog. Nucl. Magn. Reson. Spectrosc., 2012, 67, 49.
  • [23] Y. Yi, B. Adrjan, J. Wlodarz, J. Li, K. Jackowski, S. Roszak, J. Mol. Struct., 2018, 1166, 304.
  • [24] G.R. R. Fulmer, A.J.M. Miller, N.H. Sherden, H.E. Gottlieb, A. Nudelman, B.M. Stoltz, J.E. Bercaw, K.I. Goldberg, Organometallics, 2010, 29, 2176.
  • [25] R.K. Harris, E.D. Becker, S.M. Cabral de Menezes, R. Goodfellow, P. Grangers, Pure Appl. Chem., 2001, 73, 1795.
  • [26] T.H. Dunning. Jr., J. Chem. Phys., 1989, 90, 1007.
  • [27] D.E. Woon, and Dunning, T. H. Jr., J. Chem. Phys., 1993, 98, 1358.
  • [28] A. Wilson, T. van Mourik, T.H. Dunning Jr., J. Mol. Struct. (Theochem), 1996, 388, 339.
  • [29] F. Jensen, private communication.
  • [30] F. Jensen, J. Chem. Phys., 2001, 115, 9113.
  • [31] F. Jensen, J. Chem. Phys., 2002, 116, 7372.
  • [32] F. Jensen, J. Phys. Chem. A, 2007, 111, 11198.
  • [33] F. Jensen, J. Chem. Theor. Comput, 2008, 4, 719.
  • [34] A. Halkier, T. Helgaker, P. tegensen, W. Klopper, H. Koch, J. Olsen, A.K. Wilson, Chem. Phys. Lett., 1998, 286, 243.
  • [35] T.H. Dunning, Jr., J. Phys. Chem. A, 2000, 104, 9062.
  • [36] E.R. Davidson, D. Feller, Chem. Rev., 1986, 86, 681.
  • [37] D. Feller, J. Chem. Phys., 1992, 96, 6104.
  • [38] D. Feller, J. Chem. Phys., 1993, 98, 7059.
  • [39] M.W. Feyereisen, Feller, D., Dixon, D. A., J. Phys. Chem., 1996, 100, 2993.
  • [40] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian 16 Rev. C.01. Wallingford, CT, 2016.
  • [41] T. Kupka, M. Stachów, M. Nieradka, J. Kaminsky, T. Pluta, J. Chem. Theor. Comput., 2010, 6, 1580.
  • [42] R. Wałęsa, T. Kupka, M. Broda, Struct. Chem., 2015, 26, 1083.
  • [43] J. Zhang, Q. Ye, C. Yin, A.-a. Wu, X. Xu, J. Phys. Chem. A, 2020, 124, 5824.
  • [44] E. Voronkov, V. Rossikhin, S. Okovytyy, A. Shatckih, V. Bolshakov, J. Leszczynski, I. J. Quantum Chem., 2012, 112, 2444.
  • [45] K. Kapusta, E. Voronkov, S. Okovytyy, V. Korobov, J. Leszczynski, Russ. J. Phys. Chem. A, 2018, 92, 2827.
  • [46] W.J. Hehre, R.F. Stewart, J.A. Pople, J. Chem. Phys., 1969, 51, 2657.
  • [47] T. Kupka, M. Stachów, E. Chełmecka, K. Pastemy, M. Stobińska, L. Stobiński, J. Kaminsky, J. Chem. Theor. Comput., 2013, 9, 4275.
  • [48] T. Kupka, A. Mnich, M.A. Broda, Magn. Reson. Chem., 2019, 57, 489.
  • [49] G. Buntkowsky, W. Hoffmann, T. Kupka, G. Pasterna, M. Jaworska, H.-M. Vieth, J. Phys. Chem., 1998, 102, 5794.
  • [50] D.B. Chesnut, The Ab Initio Computation of Nuclear Magnetic Resonance Chemical Shielding. VCH Publishers, New York, 1996.
  • [51] K. Jackowski, E. Maciąga, M. Wilczek, J. Mol. Struct., 2005, 744-747, 101.
  • [52] W.T. Raynes, in: R.K. Harris (Ed.) The Chemical Society, London, 1977, p. 1.
  • [53] A.A. Auer, J. Gauss, J.F. Stanton, J. Chem. Phys., 2003, 118, 10407.
  • [54] J. Gauss, J.F. Stanton, J. Chem. Phys., 1996, 104, 2574.
  • [55] G.R. Fulmer, A.J.M. Miller, N.H. Sherden, H.E. Gottlieb, A. Nudelman, B.M. Stoltz, J.E. Bercaw, K.I. Goldberg, Organometallics, 2010, 29, 2176.
  • [56] T. Kupka, M.A. Broda, P.P. Wieczorek, Magn. Reson. Chem., 2020, 58, 584.
  • [57] R.K. Harris, E.D. Becker, S.M. Cabral de Menezes, P. Granger, R.E. Hoffman, K.W. Zilm, Pure Appl. Chem., 2008, 80, 59.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-477e9103-031c-4b78-a189-4b14de45e1af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.