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Abstract  

In this note, the influence of the fluctuation shape functions on vibrations of the periodic laminate is analysed. 
The structure, used to show this impact, is the composite, consisting of the layers made of components differ in 

material properties like a specific heat or a thermal conductivity. The periodic laminate is microscopically 
heterogenous and to analyse this laminate, the tolerance averaging technique is used, therefore the influence of 

the thickness of the layer can be allow. One of the concepts introduced by tolerance modelling, is the fluctuation 

shape function, affecting on the results. The fluctuation shape function is assumed a priori and the character of 

vibrations is dependent on this function. 
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1. Introduction 

This paper treats of vibrations of the periodically laminated structure, shown in the Fig. 1. 

This structure consists of several dozen cells, called the periodicity cells, with regular 

thickness, denoted by λ. The volume share of the first and the second component in the 

periodicity cell is denoted by v1 and v2, respectively and is constant. L1 is a dimension of 

presented structure along coordinate x1, perpendicular to the layers and L2 is a dimension 

along coordinate x2, parallel to the layers. The analysed laminate is characterized by 

irregular structure, but the macroscopic properties of analysed structure are constant.  

To analyse this laminate tolerance modelling is used. This technique is developed 

in many publications concerning vibrations in periodic plates [1-2], vibrations in periodic 

beams [3-7], dynamic problems in laminates [8-10], in medium thickness plates [11], in 

cylindrical shells [12] and in microperiodic composites [13]. The other methods, which 

can be used in the analysis of layered structures are the asymptotic homogenization [14], 

the homogenization introducing the concept of microlocal parameters [15] or Finite 

Element Method [16-18].  

The tolerance averaging technique introduces a few new concepts, explained 

in Section 2 of this work. Otherwise, this way of modelling introduces new assumptions, 

which allow to take into account the size of the thickness of periodicity cell. These 

assumptions are presented in Section 3. In Section 4, the equations of the tolerance model, 

obtained by using the tolerance averaging technique, are shown. The conclusions are 

described in Section 5 and at the end of this work, the references are placed. 
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Figure 1. Periodically laminated composite 

2. Basic concepts of the tolerance modelling 

The first concept, underlying of the tolerance modelling is the tolerance-periodic function 

TP, expressed by following equation:   
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where the global coordinates and the local coordinates in space Ω are denoted by x and z, 

respectively, an approximation of the tolerance-periodic function is expressed by using 

the symbol ~ and H0(Δ) is a space of square integrable functions. The tolerance-periodic 

function TP is defined in relation to the cell Δ with thickness λ defined as Δ≡[–λ/2,–λ/2] 

and is connected with the tolerance parameter δ. 

One of the natures of the tolerance-periodic function is the highly-oscillating function, 

denoted by HO. This function, has to fulfil the following condition, additionally: 
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where index i takes values 0, 1, 2. 

The second nature of the tolerance-periodic function is the slowly-varying function, 

denoted by SV, which has to satisfy succeeding term: 
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where index i takes values 0, 1, 2. 
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The tolerance averaging technique, as the name suggests, based on averaging 

procedures, using the formula: 
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where the local coordinate zϵΔ(x) and the cell Δ(x) is assumed as Δ+λ. 

3. Main assumptions of the tolerance modelling 

Tolerance modelling gives a possibility to consider the averaged part and the oscillating 

part of analysed unknowns by using the micro-macro decomposition assumption, 

according to the following formulas:   
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where the basic unknowns, the total temperature θ(x1,x2) and the total displacements 

u(x1,x2) are the tolerance-periodic functions, the averaged parts of the total temperature – 

the macrotemperature and the total displacements – the macrodisplacements are denoted 

by ϑ(x1,x2) and w(x1,x2), respectively. The oscillating parts are dependent on the fluctuation 

shape functions of the temperature gA(x1) and the displacements hM(x1) and the new main 

unknowns – the fluctuation amplitudes of the temperature ψA(x1,x2) and the displacements 

VM(x1,x2).  

The fluctuation shape functions gA(x1) and hM(x1) are assumed a priori for each 

considered phenomenon. It is possible to assume more than one fluctuation shape function 

in the analysis of specific issue (A=1,2,…,N, M=1,2,…,N). In this work, only one g-

function and one h-function is presupposed, but the influence of the character of assumed 

fluctuation shape functions is verify, by analysing the vibrations of periodic laminate two 

times – with two different characters of considered fluctuation shape functions.  

The first fluctuation shape function of the temperature gI(x1) and the first fluctuation 

shape function of the displacements hI(x1) is a saw-type function, consisting of linear 

functions, shown in the Fig. 2. The second fluctuation shape function  of the temperature 

gII(x1) and the second fluctuation shape function of the displacements hII(x1) is a function 

shown in the Fig. 3, consisting of linear and parabolic functions.  

The fluctuation shape functions of the displacements are assumed as the same 

as the fluctuation shape functions of the temperature. 

Next to the micro-macro decomposition, the main assumption of tolerance modelling 

is an approximation of the derivatives of the temperature and the displacements (in general 

– any function), expressed by following equations: 
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where the periodic approximations of individual functions are denoted by symbol ~. 
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Figure 2. The character of the first fluctuation shape function 

 

 

Figure 3. The character of the second fluctuation shape function 

4. The tolerance model equations 

The equations of the tolerance model can be obtained by using the orthogonalization 

method [10] or the extended stationary action principle [19], the concepts 

and the assumptions mentioned in Section 2 and Section 3. These equations are presented 

in the following form: 
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where c is a specific heat, ρ is a mass density, K is a tensor of conductivity, ℂ is a tensor 

of elasticity and B is a tensor of thermal extensions. 

These equations can be used in the analysis of dynamic problems in relation 

to the periodic composites. For instance, the forced vibrations of this type of laminates can 

be considered. The vibrations can be caused by mechanical or thermal loads. The method, 

recommended for solving the above equations is a type of the Finite Difference Method – 

the Cranck-Nicholson Method.  

5. Example of application 

The forced vibrations of the laminated layer, made of two different materials, periodically 

distributed along direction x1 are considered in this note. It is assumed, that analysed 

materials are steel and aluminium and the dimensions of this layer are equal to L1=1[m] 

and L2=1[m]. The volume share of the first material (steel) in the cell equals 0.25. The 

calculations were carried out for the number of the cells equals 20. The thermal (known 

temperature) and the mechanical (time-varying stresses and known displacements) loads 

on the edges of the layer are considered. The equations of the tolerance model were solved 

by using Finite Difference Method and the numerical results in the form of plots of the 

total temperature and the total displacements are obtained. The calculations were carried 

out two times with two different fluctuation shape functions. In the Figs 4-5, the 

distributions of the total temperature in one of cross-sections are presented (including the 

fluctuation shape functions gI(x1) and gII(x1), respectively). And in the Figs 6-7, the 

distributions of the total displacements in one of cross-sections are presented (including 

the fluctuation shape functions hI(x1) and hII(x1), respectively). The plots were made for 

selected time coordinate. In case of the fluctuation shape functions consisting of linear and 

parabolic functions, the microstructural character of the layer is more visible and the 

specific wedges are more noticeable and distinct, rather than in case of the fluctuation 

shape functions consisting of linear functions only (especially it comes to the temperature). 

The maximum values of the total displacements also vary, depending on the selected 

fluctuation shape function. 
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Figure 4. The total temperature including fluctuation shape function gI(x1) 

 

 

Figure 5. The total temperature including fluctuation shape function gII(x1) 

 

 

Figure 6. The total displacements including fluctuation shape function hI(x1) 
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Figure 7. The total displacements including fluctuation shape function hII(x1) 

6. Conclusions 

Bases on carried out analysis, the following conclusions can be formulated: 

- the equations of the tolerance model are characterized by slowly-varying or constant 

coefficients, in contrast to the known heat conduction equation, 

- by using tolerance modelling, it is possible to take into account the impact of the 

thickness of the cells of considered laminates, 

- tolerance modelling can be used in the analysis of dynamic problems, heat conduction 

issues and thermoelasticity problems in relation to the beams, plates or shells with periodic 

or functionally graded structures, 

-  the micro-macro decomposition allows to analyse the macro- and microvibrations 

of considered structures, 

- the proposed fluctuation shape functions, assumed a priori, affect on the character 

of vibrations of the structures, that is why the correct fluctuation shape function is so 

important. 
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