PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Theoretical Analysis and Numerical Study for Spin Jet Formation Performance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Small-caliber shaped charges rely on rotation for flight stability; however, this rotation impacts the jet formation performance, leading to radial dispersion and fragmentation of the jet. This study establishes a theoretical model to analyse the rotating jet formation process, based on classical jet formation theory. A smoothed particle hydrodynamics (SPH) numerical simulation model, calibrated with existing experimental data, was employed to simulate the formation process of rotating jets, and revealed the interplay between the jet’s axial and tangential velocities. Based on these findings, a theoretical analysis model for rotating jet formation was developed under specific assumptions to predict the jet velocity distribution, jet radius distribution, and fracture time. The theoretical results indicate that regardless of the initial angular velocity, the jet does not fracture instantaneously; on the contrary, it fractures progressively from the tip to the tail. The discrepancies between theoretical predictions and numerical simulations for the jet tip velocity and fracture time were 4.2% and 4.2 μs, respectively, validating the accuracy of the theoretical model.
Rocznik
Strony
450--481
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
  • National Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, PR China
autor
  • National Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, PR China
  • Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063000, Hebei, China
  • National Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, PR China
autor
  • National Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, PR China
autor
  • National Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, PR China
autor
  • National Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, PR China
  • Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063000, Hebei, China
Bibliografia
  • [1] Simon, J.; Martin, T.H. Spin Compensation of Shaped Charge Liners Manufactured by the Rotary Extrusion Process. Aberdeen Proving Ground, MD, BRL Memo. Rep., 1958.
  • [2] Segletes, S.B. Mechanisms Inducing Jet Rotation in Shear-formed Shaped-Charge Liners. US Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, Report No. BRL-TR-3090, 1990.
  • [3] Vladilen, F.M.; Igor, V.M.; Oleg, V.M. The Brief Review and Experimental Verification of Possibility of Spin Compensation Losses in Explosive Shaped Charge by Magnetic Field. Int. J. Mod. Appl. Phys. 2013, 3(1): 1-7.
  • [4] Singh, S. Penetration of Rotating Shaped Charges. J. Appl. Phys. 1960, 31(3): 578-581; https://doi.org/10.1063/1.1735631.
  • [5] Segletes, S.B. Mechanisms Inducing Jet Rotation in Shear-formed Shaped-Charge Liners. Master Dissertation, Drexel University, 1988.
  • [6] Ugrčić, M.; Maksimović, S. Critically Shaped Charge Jet Stress Caused by Angular Velocity. Facta Univ., Ser.: Mechanics, Automatic Control and Robotics 2007, 6(1): 119-130.
  • [7] Li, R.J.; Lu, Z.Y.; Fang, Z.J.; Sun, S.J. Numerical Simulation of Rotational Velocity on Shaped-Charge Jet Formation. J. Projectiles, Rockets, Missiles Guidance 2013, 33(5): 99-102.
  • [8] Men, J.B.; Jiang, J.W.; Wang, S.Y. Fundamentals of Numerical Simulation for Explosion and Shock Problems. Beijing: Beijing Institute of Technology Press, 2015; ISBN 978-7-5682-0919-9.
  • [9] Duan, Y.; Zhao, Y.Z.; Ren, H.L. Numerical Study on the Fracture Characteristics of Projectile Material under Impact Loading. (in Chinese) Sci. Sin. Tech. 2016, 46: 357-367; https://doi.org/10.1360/N092016-00006.
  • [10] An, X.Y.; Dong, Y.X.; Liu, J.Y.; Tian, C. General Formula to Calculate the Fragment Velocity of Warheads with Hollow Core. Int. J. Impact Eng. 2018, 113: 1-8; https://doi.org/10.1016/j.ijimpeng.2017.11.006.
  • [11] Feng, D.L.; Liu, M.B.; Li, H.Q.; Liu, G.R. Smoothed Particle Hydrodynamics Modeling of Linear Shaped Charge with Jet Formation and Penetration Effects. Comput. Fluids 2013, 86: 77-85; https://doi.org/10.1016/j.compfluid.2013.06.033.
  • [12] Qiang, H.F.; Wang, K.P.; Gao, W.R. Numerical Simulation of Shaped Charge Jet using multi-Phase SPH Method. Trans. Tianjin Univ. 2008, 14(1): 495-499; https://doi.org/10.1007/s12209-008-0084-9.
  • [13] Gustafsson, A. Shaped Charge Design: Construction of a Miniaturized Shaped Charge. Karlstads University, 2021.
  • [14] Hallquist, J.O. Theoretical Manual for DYNA3D. Lawrence Livermore National Lab., 1983, US-CA.
  • [15] Chokshi, A.H.M.M. The Prospects for Superplasticity at High Strain Rates Preliminary Considerations and an Example. Scr. Metall. Mater. 1990, 24(4): 605-610; https://doi.org/10.1016/0956-716X(90)90209-Y.
  • [16] Yan, C.; Huang, Z.X.; Zu, X.D.; Xiao, Q.Q.; Jia, X. Ultra-fine Grained Pure Copper Shaped Charge Liner Performance Study. 2017, 36(3): 72-76; https://doi.org/10.7690/bgzdh.2017.03.019.
  • [17] Liu, G.R.; Liu, M.B.; Han, X.; Yang, G.; Qiang, H.F. Smoothed Particle Hydrodynamics: a Meshfree Particle Method. Hunan/Changsha: Hunan University Press, 2005; ISBN: 7-81053-998-1.
  • [18] Silvestrov, V.V.; Gorshkov, N.N. Effect of the Strain Rate on the Tensile Strength of a Copper Shaped-Charge Jet. Combust., Explos. Shock Waves 1997, 33(1): 93-99. https://doi.org/10.1007/BF02671859.
  • [19] Lee, E.L.; Hornig, H.C.; Kury J.W. Adiabatic Expansion of High Explosive Detonation Products. University of California Radiation Lab., Livermore, Livermore, US-CA, 1968.
  • [20] Cudzilo, S.; Trzcinski, W.A. A Study on Detonation Characteristics of Pressed NTO. J. Energ. Mater. 2001, 19(1): 1-21; https://doi.org/10.1080/07370650108219390.
  • [21] Johnson, G.R.; Cook, W.H. Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures. Eng. Fract. Mech. 1985, 21(1): 31-48; https://doi.org/10.1016/0013-7944(85)90052-9.
  • [22] Pappu, S.; Murr, L.E. Hydrocode and Microstructural Analysis of Explosively Formed Penetrators. J. Mater. Sci. 2002, 37: 233-248; https://doi.org/10.1023/A:1013665108127.
  • [23] Huang, X.C, Chen, Y.Z.; Zhu, J.S. Method for Determining Material Failure Function in Notched Specimen Tensile Test. Chin. J. Solid Mech. 2008, 29(4): 385-388.
  • [24] Xin, C.L.; Xue, Z.Q.; Tu, J.; Wang, X.Q.; Sun, F.T.; Shi, D.Y. Parameter Manuals for Common Materials used in Finite Element Analysis. Beijing: China Machine Press, 2020; ISBN 978-7-111-64294-7.
  • [25] Chou, P.C.; Flis, W.J. Recent Developments in Shaped Charge Technology. Propellants Explos. Pyrotech. 1986, 11(4): 99-114; https://doi.org/10.1002/prep.19860110402.
  • [26] Gurney, R.W. The Initial Velocities of Fragments from Bombs, Shell, Grenades. Aberdeen Proving Ground, MD: Ballistic Research Laboratories, 1943.
  • [27] Chanteret, P.Y. An Analytical Model for Metal Acceleration by Grazing Detonation Proc. 7th Int. Symp. Ballistics, 1983, 515-524.
  • [28] Zhang, B.P.; Zhang, Q.M.; Huang, F.L. Detonation Physics. Beijing: Ordnance Industry Press, 2001.
  • [29] Pugh, E.M.; Eichelberger, R.J.; Rostoker, N. Theory of Jet Formation by Charges with Lined Conical Cavities. J. Appl. Phys. 1952, 23(5): 532-536; https://doi.org/10.1063/1.1702246.
  • [30] Cheng, D.X. Mechanical Design Manual. Commonly used Design Materials. Beijing: Chemical Industry Press, 2004.
  • [31] Wang, K. Calculation Formulas for Principal Stresses. Mech. Eng. 2014, 36(6): 783-785; https://doi.org/10.6052/1000-0879-13-502.
  • [32] Han, B.; Liu, H.Y.; Shui, X.P. Mechanics of Materials Tutorial. Beijing: Publishing House of Electronics Industry, 2013.
  • [33] Murr, L.E.; Trillo, E.A.; Pappu, S.; Kennedy, C. Adiabatic Shear Bands and Examples of Their Role in Severe Plastic Deformation. J. Mater. Sci. 2002, 37: 3337-3360; https://doi.org/10.1023/A:1016541023502.
  • [34] James, E.K. The Gurney Model of Explosive Output for Driving Metal. Explosive Effects and Applications. New York: Springer New York, 1998, pp. 221-257.
  • [35] Huang, Z.X. Theory and Practice of Shaped Charge. Beijing: Beijing Institute of Technology Press, 2014.
  • [36] Sun, S.J.; Wang, S.Y.; Tan, J.; Jiang, J.W.; Men, J.B. Numerical Simulation of the Influence Factors on the Forming Performance of Explosively Formed PELE. Chin. J. Explos. Propellants 2020, 43(3): 325-329; https://doi.org/10.14077/j.issn.1007-7812.201909027.
  • [37] Agu, H.O.; Hameed, A.; Appleby-Thomas, G.J. Comparison of the Microstructure of Machined and Laser Sintered Shaped Charge Liner in the Hydrodynamic Regime. J. Dynamic Behavior Mater. 2019, 5: 484-494; https://doi.org/10.1007/s40870-019-00213-y.
  • [38] von Holle, W.G.; Trimble, J.J. Temperature Measurement of Shocked Copper Plates and Shaped Charge Jets by Two‐Color IR Radiometry. J. Appl. Phys. 1976, 47(6): 2391-2394; https://doi.org/10.1063/1.323028.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-477cff54-8c1e-4088-ad6d-5e6fa65d1523
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.