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Abstract: An efficient theory of the polarization state evolution of electromagnetic wave at the magnetized plasma is presented. 
Angular variable technique (AVT), developed on the basis of quasi-isotropic approximation (QIA) of geometrical optics, 
describes both quasi-longitudinal propagation (Faraday Effect) and quasi-transverse propagation (Cotton-Mouton effect), even 
in the case when both effect combine nonlinearly. It could be used as a theoretical background for a polarimetric diagnostic of at 
any type laboratory or interstellar plasma as long as the conditions of weak anisotropy and weak inhomogeneity are fulfilled. As 
an example, equations of AVT are applied to magnetized plasma with parameters typical for magnetic fusion devices.  

Zastosowanie metody zamiennych kątowych w polarymetrii plazmy

Słowa kluczowe: plazma, polarymetria, AVT.

Streszczenie: W artykule przedstawiona jest teoria ewolucji stanu polaryzacji fali elektromagnetycznej w niejednorodnym 
ośrodku, jakim jest plazma znajdująca się w polu magnetycznym. Prezentowana technika zmiennych kątowych (AVT) została 
opracowana na podstawie przybliżenia quasi-izotropowego (QIA) optyki geometrycznej. Opisuje ona zmiany polaryzacji zarów-
no w przypadku propagacji równoległej do pola magnetycznego (efekt Faradaya), jak i propagacji poprzecznej (efekt Cotton-
-Moutona). Umożliwia również interpretację pomiaru polarymetrycznego, w przypadku gdy oba efekty są istotne i oddziałują ze 
sobą nieliniowo. Proponowany formalizm może stanowić podstawę teoretyczną diagnostyki polarymetrycznej dla dowolnego 
typu plazmy, o ile spełnione są warunki słabej anizotropii i słabej niejednorodności. Równania AVT zastosowano do namagne-
sowanej plazmy o parametrach występujących we współczesnych reaktorach termojądrowych.

Introduction

It is well known fact that more than 99,9% of the 
matter in the universe is in the form of plasma, which 
is the fourth state of matter after solid, liquid, and gas. 
The natural sources of plasma are the stars, atmosphere, 
lightings, and gaseous nebula. Nevertheless, various 
types of plasma are created in laboratories for different 
applications, which include arcs, gaseous discharge, laser 
produced plasma, and recently the most importantly, 
tokamak plasma. These plasma sources might have 
various applications in different fields of research and 
industry. Typical plasma parameters cover dozens 

orders of magnitude: size – 10–6 m (lab plasma) – 1025 m 
(intergalactic nebula), density – 1m–3 (intergalactic 
medium) – 1035 m–3 (white dwarfs), temperature – ~0 K 
(intergalactic plasma) – 109K (fusion plasma) (Fig. 1), 
lifetime – 10–12 s (laser-produced plasma) – 1017  s 
(intergalactic plasma), magnetic field – 10–4 T (lab 
plasma) – 1011 T (near neutron stars). 

There are many methods for studying such 
a diverse medium, but one of the most important is 
polarimetry. This method is based on the fact that for 
high-frequency electromagnetic waves plasma, in the 
presence of a magnetic field, becomes a birefringent 
and optically active medium with strong dependence on 
plasma density and magnetic field. As a consequence 
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the measurement of changes in the wave polarization 
during its propagation into plasma, it provides valuable 
information on plasma density and magnetic field. 
Especially the last one is very important, as polarimetry 
is one of the few techniques to measure the magnetic 
field in the interior of the plasma. Usually, the change 
in the polarization state is considered in two separate 
cases [2, 3]. The first one take place when propagation 
direction is parallel to the magnetic field, so plasma is 
optically active and imposes the Faraday Effect (F). 
The polarization ellipse (and, for linear polarization, the 
polarization plane) rotates, with a constant ellipticity, 
so only its orientation changes (Fig. 2a). The second 
one is for propagation perpendicular to the magnetic 
field, so plasma is purely birefringent and imposes the 
Cotton-Mouton effect (CM). In this case, the ellipticity 
of the polarization ellipse is changing with a constant 
polarization plane (Fig. 2b).

components with respect to the wave propagation 
direction. It complicates the interpretation of 
polarimetry measurements, especially when F and 
CM effects are strong   [2, 3] and more sophisticated 
treatment is indispensable. Here, we present the theory 
of electromagnetic wave polarisation state evolution 
in heterogeneous magnetized plasma for any coupling 
between F and CM effect. The only restriction is weak 
anisotropy and weak inhomogeneity of the analysed 
medium. 

The paper is organised as follows: Section 2 outlines 
the basic equations of quasi-isotropic approximation and 
derives AVT equations in (ψ, δ) from QIA equations. 
Section 3 rewrites AVT equations in the case of cold 
plasma approximation. Section 4 analyses the choice 
of the appropriate wavelength of the beam applied at 
polarimetric diagnostic with the use of an example of 
modern tokamak plasma conditions.

1. Polarization state evolution

It is commonly accepted to characterize an 
electromagnetic wave traveling along the z axis as the 

vector sum of two harmonic electric fields Ex z t,( )  
and Exy z t,( ), whose directions are parallel to the x and  
y axes respectively:
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where  ex and  ey are unit vectors along the coordinate 
axis. Γ is the polarization vector
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i

x y
i

y
x y

0 0
δ δ         (2) 

orthogonal to the beam propagation direction and 
dependent on the magnitudes E0 and phases δ of both 
complex components Ex and Ey. For the beam passing 
through anisotropic medium, as plasma located at 
external magnetic field, its polarization state changes 
along the path. An adequate method for the description 
of such an evolution is the Budden’s method [4, 5], and 
its extension – the quasi-isotropic approximation (QIA) 
[6, 7]. Both methods deal with coupled wave equations 
for the components of the electromagnetic wave field. 
In the case of the quasi-isotropic approximation of the 
geometrical optics method, basic assumptions are that 
the scale of medium inhomogeneity L is much larger 
than the beam wavelength  λ 

Fig. 1. Temperatures and densities of astrophysical and 
laboratory plasma [1]

Source: Authors based on [1].

a)

b)

Fig. 2. 	 The polarization ellipse change in Faraday (a) and 
Cotton-Mouton (b) effect

Source: Authors.

The coupling between both effects appears when 
the magnetic field has both parallel and perpendicular 
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                        λ  L                              (3) 

(weak inhomogeneity condition) and that the full tensor 
of electrical permittivity of an anisotropic medium   
εmn could be divided into two parts: the electrical 
permittivity   ε0 of the isotropic background medium and 
the anisotropy tensor  vmn

        	  ε εmn mn mn= +0δ ν                      (4) 

with components much smaller than ε0

		       max[ mnν ε] 0                     (5) 

(weak anisotropy condition). According to [6,7], an 
asymptotic solution to Maxwell’s equation in small 

parameters µ λG L= /  and  µ ν ε
Α
= / ( )0max mn leads to 

the set of complex ordinary equations for the components   
Ex and  Ey of the polarization vector:
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where k0 is the local wave number of the electromagnetic 
beam.

Although the equations (6) fully describe the 
evolution of the polarization vector along the trajectory, 
they are not used in classical polarimetry. The reason is in 
fact that the equations (6) describe the evolution of both 
complex components Ex and  Ey and therefore of all four 
parameters, Ex0, Ey0, δx, and  δy of the polarization vector. 
In contrast, polarimetric systems usually measure only 
the amplitude ratio Ey0/Ex0 and phase difference   δy – δx 
between two components of the polarization vector and 
present them as Stokes vector components [8] or any 
other equivalent quantities describing polarization state, 
like complex amplitude ratio [9], complex polarization 
angle [10] or pair of any two angular parameters of 
polarization ellipse [8] (Fig. 3).

It becomes necessary to transform the equations 
(6) to the form representing the evolution of measurable 
parameters, e.g., the set of azimuthal angle ψ and 
the phase difference angle δ.  According to [8, 11], 
between angular variables set (ψ, δ) and polarization 
vector components  Ex and Ey, there are the following 
relations:
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Fig. 3. 	 Angular parameters of polarization ellipse: a) azimuthal angle ψ and ellipticity angle χ; b) amplitude ratio α and 
phase difference δ

Source: Authors.

a) b)
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where the overbar denotes a scalar complex conjugate. 
Taking derivatives of both equations (7) and substituting 
proper relations from (6), one can obtain that angular 
variables set (ψ, δ) which obeys equations:
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are components responsible for dichroism and
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are components responsible for birefringence. The 
obtained equations could be used to the analysis of 
polarimetric measurement for any type of the plasma, 
as long as the conditions of weak inhomogeneity (3) 
and weak anisotropy are fulfilled (5). Moreover, in 
the most common case of a non-adsorbing medium, 
like collisionless plasma,  Ai = 0 and equations (10) 
simplify to 
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2. Polarization state evolution in cold 
    magnetized plasma

Fig. 4. 	 Position of the external magnetic field B and unit 
vectors  ex and ey relative the ray propagation 
direction ez

Source: Authors.

In this section, we apply equations (8) to the 
analysis of the angular variable set (ψ, δ) evolution in 
weakly anisotropic, collisionless, plasma. In a coordinate 
system presented in Fig. 4, where the magnetic field 
has longitudinal component Bz and two transverse 
components Bx and By, the electrical permittivity ε0 of 
the isotropic background medium is equal

                              ε0 1= − v                        (12) 

and the anisotropy tensor v has a form
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are standard plasma parameters connected with plasma 
frequency ωp, cyclotron frequency ωc and the beam 
frequency ω = 2πc/λ. Weak anisotropy, condition (5), 
requires

                      ν << 1 and  u  <<1                        (15)

  (8)

(11)
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or equivalently

                  ω >> ωp	  and  ω >> ωc	            (16)

which are guaranteed by the choice of appropriate short 
wavelength of the electromagnetic beam. The conditions 
(16) also ensure that there is no total reflection of an 
electromagnetic wave at a cutoff layer, where the local 
refractive index goes to zero. 

Introducing (12)–(14) into (10), we find the values 
of vector Ω: 
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frequently used in plasma polarimetry [12]. The first 
two components of vector  Ω define the Cotton-Mouton 
effect, which depends on two components of external 
magnetic field perpendicular to the beam propagation 
direction. The third component defines the Faraday 
Effect, proportional to the component of external 
magnetic field parallel to the beam propagation direction. 
In the case of the pure Faraday Effect, when propagation 
is quasi-parallel, equations (11) simplify to
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So the evolution of the polarization ellipse is reduced 
to the rotation of its polarization plane at the Faraday 
angle 

	 ∆ψ λ= ⋅ − ∫2 63 10 13 2. ||B N zed           (19) 

In the same way, for pure a Cotton-Mouton Effect 
in the case of quasi-perpendicular propagation, the 
polarization state evolution is in the change of its phase 
difference angle:

      ∆δ = ⋅ −
⊥∫2 46 10 11 3 2. λ B N zed                 (20)

 In both cases, polarimetric measurement could be 
used to obtain information on the line integrated plasma 
density when the magnetic field value is known or vice 
versa as a magnetic field detector for given plasma 
density profile. 

In general case, when the magnetic field has 
both parallel and perpendicular component, both 
effects start to combine nonlinearly. In such a case, 
to obtain the information on plasma density or the 
magnetic field value the system, (11) has to be solved 
numerically by a sophisticated method of polarimetric 
data inversion [13, 14]. The associated calculations are 
very time consuming, and the analysis of polarimetric 
measurement is very hard. It is better to design the 
polarimetric system in such a way that only one effect 
takes place. Another option is to use the electromagnetic 
beam with plane polarization (δ = 0)  of the azimuth angle 
ψ = π/4  and the proper wavelength value, so Faraday 
rotation and Cotton-Mouton phase shift are low: Δψ < 
0.5 rad and  Δδ < 0.5 rad. Interest in this case stems from 
fact that, along the whole path, sin cos2 1ψ δ( ) ≅ ( ) ≅
and tan tanδ ψ( ) ≅ ( ) ≅−1 2 0 . Under these conditions, 
system (11) could be written as 
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Therefore, both Equations (19) and (20) are correct, 
and there is only a second order coupling between 
Faraday and Cotton-Mouton Effects and the analysis is 
greatly simplified. 

3. Probing beam wavelength

One of the most important tasks in the design of 
a polarimetric systems is the selection of proper probing 
beam wavelength, matched to the length L, density   Ne 
and magnetic field B of the plasma to be tested. There 
are several constrains to be taken into account. Some 
of them were discussed at the article. The requirement 
of weak anisotropy, set by conditions (16), limits the 
maximum wavelength from the top. The limit can be 
taken as follows:

1)	 ω > 0.1ωp,
2)	 ω > 0.1ωc.
Another restriction on the maximum wavelength 

comes from the fact that, for some λ value, the change in 
the azimuthal angle ψ and the phase difference angle   δ 
exceed  2π and the measurement becomes ambiguously. 
To avoid such a situation, the F and CM Effects have to 
be smaller than  2π as follows:

3)	 Δψ < 2π,
4)	 Δδ < 2π.
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On the other hand, the effect of polarization change 
has to be measurable with sufficiently high signal to noise 
ratio. As the Faraday rotation is proportional to the λ2 and 
phase shift to λ3, the minimum value of a wavelength is 
constraint. It is reasonable to assume that measured value 
of Faraday rotation angle and Cotton-Mouton phase shift 
has to be at least 0 1 0 002. .° ≅ rad:

5)	 Δψ > 0.002,
6)	 Δδ > 0.002.
It has to be pointed out that mechanics, optics, and 

electronic (e.g., minimum disturbance by vibrations 
and refraction, detectors sensitivity) also force specific 
restrictions for the beam wavelength, but this is beyond 
the scope of the present article. 

Fig. 5. Constrains for polarimetric wavelength at tokamak JET plasma conditions

Source: Authors.

Figure 5 presents such an analysis for plasma and 
magnetic field conditions typical for JET – the biggest in 
the world thermonuclear experimental reactor. At Jet the 
beam passes through the plasma on the distance L ≅ 2m,
plasma density varies during the experimental pulse 
within Ne ≅ ⋅ ⋅( )− −5 10 5 1018 20 3m  range, perpendicular 
magnetic field is B⊥ ≅ 3T , and parallel magnetic field 
is B|| .≅ 0 2T . The existing JET polarimetric diagnostic 
system relies on using far infrared laser (terahertz 
region in frequency domain) with a wavelength of 
195 μm (Deuterated cyanide (DCN) laser). As it is 
clearly seen in Fig. 5, the applied wavelength allows 
the measurement in the assumed sensitivity limits for 
the whole plasma densities conditions. However, for 
densities Ne > ⋅ −5 1019 3m , both Faraday rotation and 
Cotton-Mouton phase shift exceed 0.5 rad and coupling 
between both effects is strong. For this reason, decreasing 
the wavelength to 119 µm (methanol laser) seems to be 
advisable; although, for low plasma densities, only the 

Faraday Effect is measurable, but at medium and high 
densities, the F and CM would be in the range where 
coupling between them is negligible and the analysis is 
straightforward. 

Summary

Differential equations for evolution of angular 
variables set (ψ, δ) are derived on the basis of quasi 
isotropic approximation of the geometric optics method. 
These equations can be integrated numerically for 
arbitrary profiles of the electron density and for arbitrary 
configurations of the static magnetic field. The equations 
for AVT admit exact analytical solutions in the case of 
pure Faraday and pure Cotton-Mouton Effects and 
approximate solutions by the polarimetric data inversion 
method or by the perturbation method in the case of the 
strong coupling between both effects. Besides, equations 
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for evolution could be applied to any plasma type with 
parallel and perpendicular gradients of plasma density 
and magnetic field components, as long as plasma 
anisotropy and inhomogeneity are weak. 
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