PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adaptive lighting for inhomogeneous reflectivity compensation in applications for 3D shape measurements

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Surface 3D reconstruction is a topic of great relevance and it has a wide range of applications in many fields such as mechanics, bioengineering and arts. Nowadays optical systems for 3D contouring such as those based on structured light projection are becoming more and more widespread. The possibility to get shape information without any contact with the object, in fact, is a great advantage in some fields such as, for example, cultural heritage. For this class of objects, however, the issue connected with inhomogeneous reflectivity must be taken into account. Due to the different level of reflectivity, in different areas of the object, it comes out that the contrast of the projected pattern changes and, as a direct consequence, the achievable accuracy can change from part to part. In this paper, a study on the possibility to implement an adaptive lighting algorithm is performed allowing to adapt illumination in order to compensate the local inhomogeneities in terms of surface reflectivity.
Czasopismo
Rocznik
Strony
89--99
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
  • Politecnico di Bari, Dipartimento di Meccanica, Matematica, Management, Viale Japigia 182, 70126 Bari, Italy
  • Politecnico di Bari, Dipartimento di Meccanica, Matematica, Management, Viale Japigia 182, 70126 Bari, Italy
Bibliografia
  • [1] SITNIK R., A fully automatic 3D shape measurement system with data export for engineering and multimedia systems, A dissertation submitted in partial fulfilment of the requirements for the degree of doctor of philosophy in the Warsaw University of Technology, Warsaw, 2002.
  • [2] BROGGIATO G.B., CAMPANA F., GERBINO S., MARTORELLI M., Confronto tra diverse tecniche di digitalizzazione delle forme per il reverse engineering, Giornale ATA 55(7/8), 2002, pp. 256–266.
  • [3] HUYNH D.Q., OWENS R.A., HARTMANN P.E., Calibrating a structured light stripe system: a novel approach, International Journal of Computer Vision 33(1), 1999, pp. 73–86, DOI: 10.1023/ A:1008117315311.
  • C., CASAVOLA C., PAPPALETTERA G., PAPPALETTERE C., Residual stress measurement by electronic speckle pattern interferometry: a study of the influence of geometrical parameters, Structural Integrity and Life 11(3), 2011, pp. 177–182.
  • [5] BARILE C., CASAVOLA C., PAPPALETTERA G., PAPPALETTERE C., Residual stress measurement by electronic speckle pattern interferometry: a study of the influence of analysis parameters, Structural Integrity and Life 12(3), 2012, pp. 159–163.
  • [6] MIAO H., QUAN C., TAY C.J., FU Y., WU X.P., Optical edge projection for surface contouring, Optics Communications 256(1–3), 2005, pp. 16–23, DOI: 10.1016/j.optcom.2005.06.029.
  • [7] SALVI J., PAGÈS J., BATLLE J., Pattern codification strategies in structured light systems, Pattern Recognition 37(4), 2004, pp. 827–849, DOI: 10.1016/j.patcog.2003.10.002.
  • [8] TALEBI R., ABDEL-DAYEM A., JOHNSON J., 3-D reconstruction of objects using digital fringe projection: survey and experimental study, World Academy of Science, Engineering and Technology, International Journal of Mathematical and Computational Sciences 7(6), 2013, pp. 1010–1019.
  • [9] SONG ZHANG, VAN DER WEIDE D., OLIVER J., Superfast phase-shifting method for 3-D shape measurement, Optics Express 18(9), 2010, pp. 9684–9689, DOI: 10.1364/OE.18.009684.
  • [10] MING-JUNE TSAI, CHUAN-CHENG HUNG, Development of a high-precision surface metrology system using structured light projection, Measurement 38(3), 2005, pp. 236–247, DOI: 10.1016/j.measurement.2005.07.014.
  • [11] BLAHUSCH G., ECKSTEIN W., STEGER C., Calibration of curvature of field for depth from focus, ISPRS Archives 34, 2003, pp. 173–177.
  • [12] MORA P., MORA L., Le superfici architettoniche, materiale e colore, Bollettino d’Arte Ministero per i Beni Culturali e le Attività Culturali, 35–36, 1984, pp. 115–118.
  • [13] WADDINGTON C., KOFMAN J., Analysis of measurement sensitivity to illuminance and fringe-pattern gray levels for fringe-pattern projection adaptive to ambient lighting, Optics and Lasers in Engineering 48(2), 2010, pp. 251–256, DOI: 10.1016/j.optlaseng.2009.07.001.
  • [14] WADDINGTON C., KOFMAN J., Modified sinusoidal fringe-pattern projection for variable illuminance in phase-shifting three-dimensional surface-shape metrology, Optical Engineering 53(8), 2014, article ID 084109, DOI: 10.1117/1.OE.53.8.084109.
  • [15] HUI LIN, JIAN GAO, GUANJIN ZHANG, XIN CHEN, YUNBO HE, YAN LIU, Review and comparison of high -dynamic range three-dimensional shape measurement techniques, Journal of Sensors, Vol. 2017, 2017, article ID 9576850, DOI: 10.1155/2017/9576850.
  • [16] DAS A., KAR A., BHATTACHARYYA D., Elimination of specular reflection and identification of ROI: the first step in automated detection of cervical cancer using digital colposcopy, 2011 IEEE International Conference on Imaging Systems and Techniques, 2011, pp. 237–241, DOI: 10.1109/ IST.2011.5962218.
  • [17] FARID H., ADELSON E.H., Separating reflections and lighting using independent components analysis, [In] Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, 1999, pp. 262–267, DOI: 10.1109/CVPR.1999.786949.
  • [18] LIANG-CHIA CHEN, DUC-HIEU DUONG, CHIN-SHENG CHEN, 3-D surface profilometry for objects having extremely different reflectivity regions, The 14th IFToMM World Congress, Taipei, Taiwan, October 25–30, 2015, DOI: 10.6567/IFToMM.14TH.WC.OS12.012.
  • [19] WADDINGTON C., KOFMAN J., Camera-independent saturation avoidance in measuring high-reflectivity-variation surfaces using pixel-wise composed images from projected patterns of different maximum gray level, Optics Communications 333, 2014, pp. 32–37, DOI: 10.1016/j.optcom.2014.07.039.
  • [20] BABAIE G., ABOLBASHARI M., FARAHI F., Dynamics range enhancement in digital fringe projection technique, Precision Engineering, 39, 2015, pp. 243–251, DOI: 10.1016/j.precisioneng.2014.06.007.
  • [21] HUI LIN, JIAN GAO, QING MEI, YUNBO HE, JUNXIU LIU, XINGJIN WANG, Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement, Optics Express 24(7), 2016, pp. 7703–7718, DOI: 10.1364/OE.24.007703.
  • [22] CHI ZHANG, JING XU, NING XI, JIANGUO ZHAO, QUAN SHI, A robust surface coding method for optically challenging objects using structured light, IEEE Transactions on Automation Science and Engineering 11(3), 2014, pp. 775–778, DOI: 10.1109/TASE.2013.2293576.
  • [23] SRINIVASAN V., LIU H.C., HALIOUA M., Automated phase-measuring profilometry: a phase mapping approach, Applied Optics 24(2), 1985, pp. 185–188, DOI: 10.1364/AO.24.000185.
  • [24] SITNIK R., KUJAWIŃSKA M., WOŽNICKI J.M., Digital fringe projection system for large-volume 360-deg shape measurement, Optical Engineering 41(2), 2002, pp. 443–449, DOI: 10.1117/1.1430422.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4770ddf3-8229-4f84-8437-532cffc9b176
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.