PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation of Electrospun Composite PEG/PVP Phase-Change Nanofibers and their Application in Cigarette Cooling Filters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Composite phase-change nanofibers were prepared by electrospinning with polyethylene glycol (PEG) as the phase-change material (PCM) and polyvinylpyrrolidone (PVP) as the carrier matrix. The high PEG content endowed the nanofibers with an excellent cooling effect and significantly reduced the smoke temperature. For PEG70/PVP nanofibers, the smoke temperature can be decreased 45℃ at the 8th puff, and be kept below 45℃. The cooling test proved that the electrospun PEG/PVP phase-change nanofibers exhibited a desirable cooling performance, improving the comfort of cigarette products. And the composite PEG/PVP phase-change nanofibers present great potential as the cooling cigarette filter material for HnB tobacco application.
Rocznik
Strony
9--13
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
  • Inner Mongolia Kunming Cigarette Co., Ltd., 19 Daerdeng North Road, 010020, Hohhot, Inner Mongolia, China
autor
  • Inner Mongolia Kunming Cigarette Co., Ltd., 19 Daerdeng North Road, 010020, Hohhot, Inner Mongolia, China
autor
  • Inner Mongolia Kunming Cigarette Co., Ltd., 19 Daerdeng North Road, 010020, Hohhot, Inner Mongolia, China
  • Inner Mongolia Kunming Cigarette Co., Ltd., 19 Daerdeng North Road, 010020, Hohhot, Inner Mongolia, China
autor
  • Inner Mongolia Kunming Cigarette Co., Ltd., 19 Daerdeng North Road, 010020, Hohhot, Inner Mongolia, China
autor
  • Inner Mongolia Kunming Cigarette Co., Ltd., 19 Daerdeng North Road, 010020, Hohhot, Inner Mongolia, China
Bibliografia
  • 1. Hua Q, Wu D, Liu BZ & Zheng SJ, CN Pat No. 105686078A, 22 June 2016.
  • 2. Yang T, Zhou J, Fang Z, & Shen YW, CN Pat No. 106690415A, 28, March, 2017.
  • 3. Wang Y, Sun HF, Ji X, Liu XJ, Wang Ch, Zhang L & Wang J Sh, CN Pat No. 111602845A, 27 April 2020.
  • 4. Li SQ, Chen S, Wang XC, Zhang XX & Shi HF, Acta Materiae Compositae Sinica, 35(2018) 8.
  • 5. Zhou D, Zhao CY & Tian Y, Appl. Energy, 92 (2012) 593. DOI: 10.1002/app.33870
  • 6. Choi K & Cho G, J. Appl. Polym. Sci. 121(2011) 3238. DOI: 10.1002/app.33870
  • 7. Benmoussa D, Molnar K, Hannache H & Cherkaoui O, Adv. Polym. Technol. 37(2018) 419. DOI: 10.1002/adv.21682
  • 8. Wuttig M & Yamada N, Nat. Mater. 6(2007) 824. DOI: 10.1038/nmat2009
  • 9. Bhardwaj K & Kundu SC, Biotechnol. Adv. 28(2010) 325. DOI: 10.1016/j.biotechadv.2010.01.004
  • 10. Nasouri K, Shoushtari AM & Mojtahedi MRM, Polym. Sci. Ser. A, 57(2015) 747. DOI: 10.1134/S0965545X15060164
  • 11. Yuan YP, Zhang N, Tao WQ, Cao XL & He YL, Renew. Sust. Energ. Rev. 29 (2014) 482. DOI: 10.1016/j.rser.2013.08.107
  • 12. Liu CZ, Rao ZH, Zhao JT, Huo YT & Li YM, Nano Energy, 13 (2015) 814. DOI: 10.1016/j.nanoen.2015.02.016
  • 13. Do CV, Nguyen TTT & Park JS, Sol. Energy Materials and Sol. Cells, 104 (2012) 131. DOI: 10.1016/j.solmat.2012.04.029
  • 14. Panda A, Pati AR, Kumar A & Mohapatra SS, Int. Commun. Heat Mass Transf. 105(2019), 19. DOI10.1016/j.icheatmasstransfer.2019.03.015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-476ec04f-a37a-40e8-8dd8-75f591d25043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.