PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using braking resistor to improve the performance of neutral point clamped and parallel interleaved DFIG converters

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, the use of multilevel converters is on the rise for medium and high voltage applications. Multilevel Converters (MLCs) have the merit of clamping the voltages thereby preventing the need for fast switching, in addition to providing cleaner output waveform for effective switching. As wind turbines are increasing in power ratings, MLCs could be well suited in regards to this application. This paper investigates the performance of a Neutral Point Clamped three-level converter system and a two-level parallel interleaved MLC system in a DFIG variable speed wind turbine during transient. The space vector modulations, switching sequences and strategies of both MLCs were analyzed. The DFIG-based wind turbine system was subjected to a severe grid fault to test the strength of both MLC systems. Furthermore a braking resistor connected to the stator of the DFIG was used to improve the performance of both MLC system. Simulations were run using Power System Computer Aided Design and Electromagnetic Transient Including DC platform. Results obtained using both MLCs were compared based on the performance index of some of the DFIG variables. Also, the responses of the MLCs were compared to the traditional two level DFIG converter topology.
Rocznik
Strony
159--172
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
  • Department of Electrical and Electronic Engineering Kitami Institute of Technology, Hokkaiddo, Japan
Bibliografia
  • 1. Sun, T., Chen, Z., and Blaabjerg F.: ‘Flicker study on variable speed wind turbines with doubly fed induction generators’, IEEE Trans. Energy Convers., 2005, 20, (4), pp. 896905
  • 2. Tsili, M., and Papathanassiou, S.: ‘A review of grid code technical requirements for wind farms’, IET Renew. Power Gen., 2009, 3, (3), pp. 308-332.
  • 3. Hansena, A., D., and Michalke, G.: ‘Fault ride-through capability of DFIG wind turbines’, Renewable Energy, 2007, pp. 1594-1610.
  • 4. Lopez, J., Sanchis, P., Roboam, X., and Marroyo, L.: ‘Dynamic behavior of the doublyfed induction generator during three-phase voltage dips’, IEEE Trans. Energy Convers., 2007, 22, (3), pp. 709–717.
  • 5. Lopez, J., Gubia, E., Sanchis, P., Roboam, X., and Marroyo, L.: ‘Wind turbines based on doubly fed induction generator under asymmetrical voltage dips’, IEEE Trans. Energy Convers., 2008, 23, (1), pp. 321–330.
  • 6. Nian, H., and Song, Y.: ‘Direct power control of doubly fed induction generator under distorted grid voltage’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 894-905.
  • 7. Hu, J., Xu, H., and He, Y.: ‘Coordinated control of DFIG’s RSC and GSC under generalized unbalanced and distorted grid voltage conditions’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 2808-2819.
  • 8. Geng, H., Liu, C., and Yang, G.: ‘LVRT capability of DFIG-based WECS under asymmetrical grid fault condition’, IEEE Trans. Ind. Electron., 2013, 60, (6), pp. 24952509.
  • 9. Kasem, A., H., El-Saadany, E. F., El-Tamaly, H.H and Wahab, M.A.A.: ‘An improved fault ride-through strategy for doubly fed induction generator-based wind turbines’, IET Renew. Power Gener., 2008, 2, (4), pp. 201-214.
  • 10. Tohidi, S., Oraee, H., MZolghadri, M., R., Shao, S., and Tavner, P.: ‘Analysis and enhancement of low-voltage ride-through capability of brushless doubly fed induction generator’, IEEE Trans. Ind. Electron., 2013, 60, (3), pp. 1146-1155.
  • 11. Flannery, P., S., and Venkataramanan, G.: ‘A fault tolerant doubly fed induction generator wind turbine using a parallel grid side rectifier and series grid side converter’, IEEE Trans. Power Elec., 2008, 23, (3), pp. 1126-1135.
  • 12. Ambati, B., Kanjiya, P., and Khadkikar, V.: ‘A low component count series voltage compensation scheme for DFIG WTs to enhance fault ride through capability’, IEEE Trans. Energy Convers., 2015, 30, (1), pp. 208-217.
  • 13. Guo, W., Xiao, L., Dai, S., Li, Y., Xu, X., Zhou, W., and Li, L.: ‘LVRT capability enhancement of DFIG with switch-type fault current limiter’, IEEE Trans. Ind. Electron. 2014, 62, (1), pp. 332-342.
  • 14. Rashid, G., and Hassan, M.: ‘Transient stability enhancement of doubly fed induction machine-based wind generator by bridge-type fault current limiter’, IEEE. Trans. Energy Convers. 2015, 30, (3), pp. 939-947.
  • 15. Mohammad H., P., Zadeh, S., G., Tohidi, S.: ‘Symmetrical and asymmetrical low-voltage ride through of doubly fed induction generator wind turbines using gate-controlled series capacitor’, IET Renew. Power Gen., 2015, 9, (7), pp. 840-846.
  • 16. Hossain, M., M., Hassan A.: ‘Transient stability improvement of doubly fed induction generator based variable speed wind generator using DC resistive fault current limiter’, IET Renew. Power Gen., 2016, 10, (2), pp. 150-157.
  • 17. Su, C., Hu, W., Chen, Z., Hu, Y.: ‘Mitigation of power system oscillation caused by wind power fluctuation’, IET Renew. Power Gener., 2013, 7, (6), pp. 639-651.
  • 18. Chen, W., Xu, D., Zhu, N., Chen, M., Blaabjerg, F.: ‘Control of doubly fed induction generator to ride through recurring grid faults’, IEEE Trans. Power Electron, Early access article, June. 2015.
  • 19. Xie, D., Xu, Z., Yang, L., Qstergaard, J., Xue, Y., and Wong, K. P.: ‘A comprehensive LVRT control strategy for DFIG wind turbines with enhanced reactive power support’, IEEE Trans. Power System., 2013, 28, (3), pp. 3302-3310.
  • 20. Nanou, S., Papathanassiou, S.: ‘Evaluation of a communication-based fault ride-through scheme for offshore wind farms connected through high-voltage DC links based on voltage source converter’, IET Renew. Power Gen., 2015, 9, (8), pp. 882-891.
  • 21. Rahimi, M., and Parniani, M.: ‘Efficient control scheme of wind turbines with doubly fed induction generators for low voltage ride-through capability enhancement’, IET Renew. Power Gener., 2010, 4, (3), pp. 242-252.
  • 22. Lopez, J., Gubia, E., Olea, E., Ruiz, J., and Marroyo, L.: ‘Ride through of wind turbines with doubly fed induction generator under symmetrical voltage dips’, IEEE Trans. Ind. Electron., 2009, 56, (10), pp. 4246-4254.
  • 23. Mendes, V. F., Sousa, C. V., Hofmann, W., Silva, S. R., ‘Doubly fed induction generator ride-through fault capability using resonant controllers for asymmetrical voltage sags’, IET Renew. Power Gen., 2015, 9, (7), pp. 783-791.
  • 24. Tarafdar, H., M., and Abapour, M.: ‘Non-superconducting fault current limiter with controlling the magnitude of fault currents’, IEEE Trans. Power Electronics., 2009, 24, (3), pp. 613-619.
  • 25. Akira, N., Isao, T., Hirofumi, A.: ‘A new neutral point clamped PWM Inverter’, IEEE Transaction on Industry Applications, 1981, 17, (5), pp. 518-523.
  • 26. Mohan, N. First Course on Power Electronics, MNPERE/Prentice-Hall, Englewood Cliffs, 2005.
  • 27. Stemmler, H., Geggenbach, P.: ‘Configurations of high-power voltage source inverter drives’, Proceedings of the 5th European Conference on Power Electronics and Applications, 1993, 5, pp. 7-12, Brighton, UK.
  • 28. Kazmierkoswki, M., P., Malesani, L.: ‘Current control techniques for three phase voltage source PWM converters: a survey’, IEEE Transactions on Industrial Electronics, 1998, 45, (5), pp. 691-703, 1998.
  • 29. Nagy, I.: ‘Novel adaptive tolerance band based PWM for field-oriented control of induction machines’, IEEE Transactions on Industrial Electronics, 1994, 41, (4), pp. 406-417.
  • 30. Brod, D., M., Novotny, D., W.: ‘Current control of VSI-PWM inverter’, IEEE Transactions on Industrial Applications, 1985, 21, (4), pp. 562-570.
  • 31. Buso, S., Malesani, L., Mattavelli, P.: ‘Comparison of current control techniques for active filter applications,” IEEE Transactions on Industrial Electronics, 1998, 45, (5), pp. 722729.
  • 32. Ghennam, T., Berkouk, E., M., and Francois, B., ‘A vector hysteresis current control applied on three level inverter-application to the active and reactive power control of doubly fed induction generator-based wind turbine’, International Review of Electrical Engineering (IREE), 2007, vol. xx, no. xx.
  • 33. Tekwani, P., N., Kanchan, R., S., Gopakumar, K.: ‘Current-error space vector-based hysteresis PWM controller for three-level voltage source inverter fed drives’, IEE Proceeding of Electric Power Applications, 2005, 152, (5), pp. 1283-1295.
  • 34. Baiju, M., R., Gopakumar, K., Umanand, L., and Pittet, A., ‘Multi axis space phasor based multi-level current hysteresis controller for an open-end winding induction motor fed from dual inverters’, Proceedings of the 29th European Conference on Intelligent Motion (PCIM), 2002, pp. 405-410, Nuremberg, Germany.
  • 35. Djeriri, Y., Meroufel, A., Belabbes, B., and Massoum, A.: ‘Three-level NPC voltage source converter based direct power control of the doubly fed induction generator at low constant switching frequency’, Revue des Energies Renouvalables, 2013, 16, (1), pp. 91-103.
  • 36. Gohil, G., Bede, L., Teodorescu, R., Kerekes, T., and Blaabjerg, F.: ‘An integrated inductor for parallel interleaved VSCs and PWM schemes for flux minimization’ IEEE Transactions on Industrial Electronics, 2015, 62, (12), pp. 7534-7546.
  • 37. Okedu, K., E.: ‘Enhancing DFIG Wind Turbine during Three-phase Fault Using Parallel Interleaved Converters and Dynamic Resistor’, IET Renewable Power Generation, 2016, DOI: 10.1049/iet-rpg.2015.0607.
  • 38. Ueda, F., Matsui, K., Asao, M., and Tsuboi, K.: ‘Parallel connections of pulse width modulated inverters using current sharing reactors’, IEEE Transactions Power Electronics, 1995, 10, (6), pp. 673-679.
  • 39. Zhang, D., Wang, F., Burgos, R., Rixin L., and Boroyevieh, D.: ‘Impact of interleaving on AC passive components of paralleled three phase voltage source converters’, IEEE Trans. Power Electronics, vol. 46, no. 3, pp. 1042-1054, 2010.
  • 40. Ma, K., Zhou, D., and Blaabjerg, F.: ‘Evaluation and design tools for the reliability of wind power converter system’, Journal of Power Electronics, 2015, 15, (5), pp. 1149-1157.
  • 41. Reigosa, P. D., Wu, R., Iannuzzo, F., and Blaabjerg, F.: ‘Robustness of MW level IGBT modules against gate oscillations under short circuit events’, Microelectronics Reliability, 2015, 55, pp. 1950-1955.
  • 42. Nashed, M., N., and Eskander, M., N.: ‘Comparing the quality of power generated from DFIG with different types of rotor converters’, Journal of Electromagnetic Analysis and Applications, 2012, 4, pp. 21-29.
  • 43. PSCAD/EMTDC Manual, Manitoba HVDC research center, 1994.
  • 44. Okedu, K. E., Muyeen, S., M., Takahashi, R., and Tamura, J.: ‘Wind farms fault ride through using DFIG with new protection scheme’, IEEE Transactions on Sustainable Energy, 2012, 3, (2), pp. 242-254.
  • 45. Floten S., Haug T., S.: ‘Modulation methods for neutral point clamped three level inverters’, Norwegian University of Science and Technology, 2010.
  • 46. Gullvik, W.: ‘Modelling, analysis and control of active front end (AFE) converter, PhD-dissertation NTNU, 2007, pp. 218.
  • 47. Asiminoaci, L., Aeloiza, E., Enjeti, P., N., and Blaabjerg, F.: ‘Shunt active-power filter topology based on parallel interleaved inverters’, IEEE Transactions Industrial Electronics, 2008, 55, (3), pp. 1175-1189.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-476d1bb5-5134-4a1b-b0a2-5353ef0349b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.