PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance analysis of an InAs/GaSb superlattice barrier photodetector covering the full LWIR spectral domain

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we present the electrical and electro-optical characterizations of an InAs/GaSb type-2 superlattice barrier photodetector operating in the full longwave infrared spectral domain. The fabricated detectors exhibited a 50% cut-off wavelength around 14 μm at 80 K and a quantum efficiency slightly above 20%. The dark current density was of 4.6×10⁻² A/cm² at 80 K and a minority carrier lateral diffusion was evaluated through dark current measurements on different detector sizes. In addition, detector spectral response, its dark current-voltage characteristics and capacitance-voltage curve accompanied by electric field simulations were analyzed in order to determine the operating bias and the dark current regimes at different biases. Finally, dark current simulations were also performed to estimate a minority carrier lifetime by comparing experimental curves with simulated ones.
Twórcy
  • IES, Univ. Montpellier, CNRS, Montpellier, France
  • IES, Univ. Montpellier, CNRS, Montpellier, France
autor
  • IRnova AB, Electrum 236 -C5, SE-164 40 Kista, Sweden
  • IRnova AB, Electrum 236 -C5, SE-164 40 Kista, Sweden
autor
  • IRnova AB, Electrum 236 -C5, SE-164 40 Kista, Sweden
  • IES, Univ. Montpellier, CNRS, Montpellier, France
Bibliografia
  • [1] Klipstein, P. C. et al. Type II superlattice technology for LWIR detectors. in Proc. SPIE vol. 9819 (2016).
  • [2] Gunapala, S. D. et al. Large area III–V infrared focal planes. Infrared Phys. Technol. 54, 155–163 (2011).
  • [3] Rubaldo, L. et al. Latest improvements on long wave p on n HgCdTe technology at Sofradir. in Proc.SPIE vol. 10177 (2017).
  • [4] Rogalski, A., Martyniuk, P. & Kopytko, M. Type-II superlattice photodetectors versus HgCdTe photodiodes. Prog. Quant. Electron. 68 100228 (2019).
  • [5] Klipstein, P. XBnn and XBpp infrared detectors. J Cryst. Growth 425, 351-356 (2015).
  • [6] Delmas, M., Rossignol, R., Rodriguez, J. & Christol, P. Design of InAs/GaSb superlattice infrared barrier detectors. Superlattice. Microst. 104, 402-414 (2017).
  • [7] Nguyen, B.-M., Bogdanov, S., Pour, S. A. & Razeghi, M. Minority electron unipolar photodetectors based on type II InAs/GaSb/AlSb superlattices for very long wavelength infrared detection. Appl. Phys. Lett. 95, 183502 (2009).
  • [8] Jiang, D. et al. Very high quantum efficiency in InAs/GaSb superlattice for very long wavelength detection with cutoff of 21 μm. Appl. Phys. Lett. 108, 121110 (2016).
  • [9] Li, X., Jiang, D., Zhang, Y. & Zhao, L. Interface optimization and fabrication of InAs/GaSb type II superlattice for very long wavelength infrared photodetectors. Superlattice. Microst. 91, 238-243 (2016).
  • [10] Katayama, H. et al. Development status of Type II superlattice infrared detector in JAXA. in Proc. SPIE vol. 8704 (2013).
  • [11] Minoglou, K. et al. Infrared image sensor developments supported by the European Space Agency. Infrared Phys. Techn. 96, 351-360 (2019).
  • [12] Sakai, M. et al. Development of Type-II superlattice VLWIR detectors in JAXA. in Proc. SPIE vol. 10177 (2017).
  • [13] Ting, D. Z., Soibel, A., Khoshakhlagh, A., Höglund, L., Keo, S. A., Rafol, B., Hill, C. J., Fisher, A. M., Luong, E. M. & Nguyen, J. in Proc. SPIE. 101770N.
  • [14] Alchaar, R., Rodriguez, J.-B., Höglund, L., Naureen, S. & Christol, P. Characterization of an InAs/GaSb type-II superlattice barrier photodetector operating in the LWIR domain. AIP Advances 9, 055012 (2019).
  • [15] Gopal, V. Variable-area diode data analysis of surface and bulk effects in HgCdTe photodetector arrays. Semicond. Sci. Tech. 9, 2267 (1994).
  • [16] Plis, E. et al. Lateral diffusion of minority carriers in n Bn based type-II InAs/GaSb strained layer superlattice detectors. Appl. Phys. Lett. 93, 123507 (2008).
  • [17] Höglund, L. et al. Influence of shallow versus deep etching on dark current and quantum efficiency in InAs/GaSb superlattice photodetectors and focal plane arrays for long wavelength infrared detection. Infrared Phys. Technol. 95, 158–163 (2018).
  • [18] Klipstein, P. et al. Minority carrier lifetime and diffusion length in type II superlattice barrier devices. Infrared Phys. Techn. 96, 155-162 (2019).
  • [19] Suchalkin, S.et al. In-plane and growth direction electron cyclotron effective mass in short period InAs/GaSb semiconductor superlattices. J Appl. Phys. 110, 043720 (2011).
  • [20] Han, X. et al. Very long wavelength infrared focal plane arrays with 50% cutoff wavelength based on type-II InAs/GaSb superlattice. Chinese Phys. B 26, 018505 (2017).
  • [21] Wei, Y. et al. High Structural Quality of Type II InAs/GaSb Superlattices for Very Long Wavelength Infrared Detection by Interface Control. IEEE J. Quantum Electron. 48, 512–515 (2012).
  • [22] Durlin, Q. et al. Midwave infrared barrier detector based on Ga-free InAs/InAsSb type-II superlattice grown by molecular beam epitaxy on Si substrate. Infrared Phys. Techn. 96, 39-43 (2019).
  • [23] Connelly, B. C., Metcalfe, G. D., Shen, H. & Wraback, M. Direct minority carrier lifetime measurements and recombination mechanisms in long-wave infrared type II superlattices using time-resolved photoluminescence. Appl. Phys. Lett. 97, 251117 (2010).
  • [24] Donetsky, D., Belenky, G., Svensson, S. & Suchalkin, S. Minority carrier lifetime in type-2 InAs–GaSb strained-layer superlattices and bulk HgCdTe materials. Appl. Phys. Lett. 97, 052108 (2010).
  • [25] Rhiger, D. R. Performance comparison of long-wavelength infrared type II superlattice devices with HgCdTe. J Electron. Mater. 40, 1815-1822 (2011).
  • [26] Rogalski, A., Martyniuk, P. & Kopytko, M. InAs/GaSb type-II superlattice infrared detectors: Future prospect. Appl. Phys. Rev. 4, 031304 (2017).
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
2. This work was partially funded by the French"Investment for the Future" program (EquipEx EXTRA, ANR 11-EQPX-0016) and ESA contract 4000116260/16/NL/BJ.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-476ced66-b5be-4b04-880c-a050833b0d56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.