PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study of uncoupled and coupled TLP models

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, two analysis models for tension leg platform (TLP) are proposed based on different simulation methods of the tendons for studying the TLP motion responses in waves. In the uncoupled analysis model, the tendon is simplified as a spring, and the restoring forces matrix is derived with the consideration of the influence of the coupled effect of horizontal offset and vertical setdown of the platform. In the coupled model, the axial and transverse vibration’s coupled effect has been considered for the establishment of the vibration equations for the tendons, and the finite difference method is used to solve the vibration equations. The time-domain coupled motion model of the platform and the mooring system is established based on the interaction forces between the tendons and the platform. The coupled and uncoupled TLP models are compared and analysed to determine their applicability. Compared with the uncoupled TLP model, the coupled TLP model has greater accuracy and a wider application range, and the effects of second-order wave force on the platform responses, horizontal offset, and vertical subsidence are analysed.
Rocznik
Tom
Strony
44--60
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Yanshan University Hebei Street, 066004 Qinhuangdao China
autor
  • Yanshan University Hebei Street, 066004 Qinhuangdao China
autor
  • Yanshan University Hebei Street, 066004 Qinhuangdao China
autor
  • Yanshan University Hebei Street, 066004 Qinhuangdao China
autor
  • Yanshan University Hebei Street, 066004 Qinhuangdao China
  • Yanshan University Hebei Street, 066004 Qinhuangdao China
Bibliografia
  • 1. Petrolio, ‘American Petroleum Institute’, Acta Petrolei Sinica, vol. 26, pp. 139-177, 1982.
  • 2. J. R. Paulling and E. E. Horton, ‘Analysis of the tension leg platform’, Society of Petroleum Engineers Journal, vol. 11, no. 03, pp. 285-294, 1971.
  • 3. J. Paulling, ‘Time-domain simulation of semi-submersible platform motion with application to the tension leg platform’, 1977.
  • 4. D. C. Angelides, C. Chen, and S. A. Will, ‘Dynamic response of tension leg platform’, 1982.
  • 5. S. Chandrasekaran and A. K. Jain, ‘Dynamic behaviour of square and triangular offshore tension leg platforms under regular wave loads’, Ocean Engineering, vol. 29, no. 3, pp. 279-313, 2002.
  • 6. S. Chandrasekaran and A. K. Jain, ‘Triangular configuration tension leg platform behaviour under random sea wave loads’, Ocean Engineering, vol. 29, no. 15, pp. 1895-1928, 2002.
  • 7. T. Kawanishi, W. Katoh, and H. Furuta, ‘Tension leg platform earthquake motion analysis’, IEEE, 1987.
  • 8. G. J. Zhai, D. Y. Tang, and H. F. Xiong, ‘Numerical simulation of the dynamic behavior of deep-water semi-submersible platform under wind and waves’, Advanced Materials Research, vol. 243-249, pp. 4733-4740, 2011.
  • 9. S. Chandrasekaran, N. R. Chandak, and G. Anupam, ‘Stability analysis of TLP tethers’, Ocean Engineering, vol. 33, no. 3/4, pp. 471-482, 2006.
  • 10. Y. M. Low, ‘Frequency domain analysis of a tension leg platform with statistical linearization of the tendon restoring forces’, Marine Structures, vol. 22, no. 3, pp. 480-503, 2009.
  • 11. Senjanović, I. Hadžić, N. Tomić, and Marko, ‘On the linear stiffness of tension leg platforms’, Sustainable Maritime Transportation and Exploitation of Sea Resources / Enrico, Rizzuto; Carlos Guedes Soares, 2011.
  • 12. K. Kozak, Z. Qian, and J. Wang, ‘Static analysis of cabledriven manipulators with non-negligible cable mass’, IEEE Press, 2006.
  • 13. M. Jameel, D. O. Oyejobi, N. A. Siddiqui, and N. Sulong, ‘Non-linear dynamic response of tension leg platform under environmental loads’, KSCE Journal of Civil Engineering, vol. 21, no. 3, pp. 1-9, 2017.
  • 14. A. K. Jain, ‘Non-linear coupled response of offshore tension leg platforms to regular wave forces’, Ocean Engineering, vol. 24, no. 7, pp. 577-592, 1997.
  • 15. O. M. Faltinsen, Sea Loads on Ships and Offshore Structures, 1990.
  • 16. P. C. Chatterjee, P. K. Das, and D. Faulkner, ‘A hydrostructural analysis program for TLPS’, Ocean Engineering, vol. 24, no. 4, pp. 313-334, 1997.
  • 17. Y. M. Choi, B. W. Nam, S. Y. Hong, D. W. Jung, and H. J. Kim, ‘Coupled motion analysis of a tension leg platform with a tender semi-submersible system’, Ocean Engineering, vol. 156, no. MAY15, pp. 224-239, 2018.
  • 18. Z. Ran, M. H. Kim, and W. Zheng, ‘Coupled dynamic analysis of a moored spar in random waves and currents (time-domain versus frequency-domain analysis)’, Journal of Offshore Mechanics & Arctic Engineering, vol. 121, no. 3, p. 194, 1999.
  • 19. T. Mazarakos and S. A. Mavrakos, ‘Mean second-order wave drift forces contour of a floating structure concept for wind energy exploitation’, in 4th International Conference on Renewable Energies Offshore (RENEW 2020), 2020.
  • 20. S. G. Tan and W. D. Boom, ‘The wave induced motions of a tension leg platform in deep water’, Offshore Technology Conference, 1981.
  • 21. E. L. Günther Clauss and C. Östergaard, Offshore Structures. Springer Berlin, 1992.
  • 22. Chakrabarti, ‘Handbook of offshore engineering’, pp. 79-131, 2005.
  • 23. J. Wang, L. Sun, Y. Wang, and S. Dai, ‘A method based on LS-SVM to estimate time-domain Green function’, Journal of Marine Science and Technology, no. 5, pp. 1-13, 2020.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47670191-5dc0-42fb-b2f2-d7a2eef6951f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.