PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The application of Kalman filtering to predict vertical rail axis displacements of the overhead crane being a component of seaport transport structure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As the devices designed to transport materials, the overhead cranes should meet certain geometric requirements for their operation to be safe. The presently available geodetic equipment, in particular total stations, provides opportunities for precise 3D measurements of coordinates of the controlled points. These coordinates make a basis for correcting the height of crane runway axes. The paper presents a method to calculate position corrections for the crane rail axes in both vertical and horizontal direction, and indicates that these results can find much wider application. Among other goals, the observations of this type, along with the Kalman filtration method, can be used to predict vertical displacements of the crane rail axes. The object of practical considerations in the paper is a crane working in the area with unfavourable geotechnical conditions and the settling limits attributed to this crane and location area in the technical design. The sample practical application has confirmed the validity of the use of the proposed solution for evaluating the operational safety of the crane. Although the tests were performed for the gantry crane, the proposed solution is believed to be applicable for other types of overhead cranes.
Rocznik
Tom
Strony
64--70
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Faculty of Civil and Environmental Engineering Gdańsk University of Technology 11/12 Narutowicz Street 80 – 233 Gdańsk POLAND
autor
  • Faculty of Civil and Environmental Engineering Gdańsk University of Technology 11/12 Narutowicz Street 80 – 233 Gdańsk POLAND
  • University of Warmia and Mazury in Olsztyn, Poland
Bibliografia
  • 1. Anigacz W., Modification of geodetic design methods for overhead crane runway rectification, (in Polish), Opole University of Technology, Studies and Monographs, z.57, Opole, 1992
  • 2. Banachowicz A., Structure of Kalman Filter at an algorithm of Integrated Navigation System, Proceedings of 2nd Symposium on “Integrated Navigation”, Maritime University of Szczecin, 2000.
  • 3. Baran L. W., Theoretical principles of processing of geodetic measurement results (in Polish), Wydawnictwo Naukowe PWN, Warsaw, 1999
  • 4. Borkowski P., Data fusion in a navigational decision support system on a sea-going vessel, Polish Maritime Research, No 4(76), Vol. 19, pp. 78-87, 2012, DOI 10.2478/ v10012-012-0043-1
  • 5. Borkowski P., Magaj J., Mąka M, Positioning based on multi-sensor Kalman filter (in Polish), Scientific Journals of the Maritime University of Szczecin, 13,(85), pp 5-9, 2008.
  • 6. Filipiak D., Kamiński W., Determination of rectification corrections for semi gantry crane rail axes in the local 3D coordinate system, Reports on Geodesy and Geoinformatics, vol. 97/2014, 71-79, DOI: 10.2478/rgg2014-0012, 2014
  • 7. Gocał J., Engineering and industrial geodesy. Part III (in Polish), Wydawnictwo AGH, Krakow, 2010
  • 8. Grala M., & Kopiejewski G., Engineering Geodesy. Selected divisions. (in Polish), Wyd. UWM, Olsztyn, 2003
  • 9. Gulal E., Structural deformations analysis by means of Kalman-filtering., Boletim De Ciencias Geodesicas, Volume: 19 Issue: 1 Pages: 98-113 Published: JAN-MAR, 2013, DOI 10.1590/S1982-21702013000100007
  • 10. Kalman, R.E., A new approach to linear filtering and prediction problems. Transactions of the ASMEJournal of Basic Engineering, 82 (D): 35-45, 1960, DOI 10.1115/1.3662552
  • 11. Kamiński W., New method for determination of adjustment corrections for crane rail axes, Reports on Geodesy vol. 94/2013, 47-55, DOI: 10.2478/rgg-2013-0006 , 2013
  • 12. Křemen T., Koska B., Pospíšil J., Kyrinovič P.,Haličková J., & Kopáčik A., Checking of crane rails by terrestrial laser scanning technology, 13th FIG, 4th IAG, Lnec, Lisbon 12-15 May, 2008
  • 13. Kyrinovič P., & Kopáčik A., Automated measurement system for crane rail geometry determination, 27th International Symposium on Automation and Robotics in Construction (ISARC 2010), 294 – 305, 2010
  • 14. Marjetič A., Kregar K., Ambrožič T., & Kogoj D., An Alternative Approach to Control Measurements of Crane Rails, Sensors, 12, 5906-5918, 2012, DOI 10.3390/ s120505906
  • 15. Naus K., The effect of measurements burdened with gross error on the accuracy of ship position estimation with the aid of extended Kalman filter and robust geodesic adjustment (in Polish), Logistyka, 3/2014, 4589-4602, 2014
  • 16. Shi. C., Zhao D., Peng J., Shen C., Identification of ship maneuvering model Using extender Kalman filters, TransNav, International Journal on Marine Navigation and Safety of Sea Transportation, Vol.3, No. 1, March 2009, DOI 10.1201/9780203869345.ch59
  • 17. Stateczny A., Kazimierski W., A Concept of Decentralized Fusion of Maritime Radar Targets with Multisensor Kalman Filter, IEEE, Proceedings of IEEE 11-th International Radar Symposium, 16-18 June 2010, pp.1-4
  • 18. Tomera M., Dynamic positioning system for a ship on harbour manoeuvring with different observers. experimental results. Polish Maritime Research Volume: 21 Issue: 3 Pages: 13-24 Published: SEP 2014
  • 19. Wiśniewski Z., Compensatory calculation in geodesy (with examples) (in Polish), Wydawnictwo UWM, Olsztyn,2005
  • 20. Wiśniewski Z., Advanced methods of geodetic observation processing with examples (in Polish), Wydawnictwo UWM w Olsztynie, Olsztyn, 2013.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47612459-3c10-4685-97a8-6018d579f815
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.