PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Cu-doped TiO2 brookite photocatalyst with enhanced visible light photocatalytic activity

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cu-doped TiO2 having a brookite phase and showing enhanced visible light photocatalytic activity was synthesized using a mild solvothermal method. The as-prepared samples were characterized by various techniques, such as X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-Vis diffuse reflectance spectroscopy. Photocatalytic activity of Cu-doped brookite TiO2 nanoparticles was evaluated by photodegradation of methylene blue under visible light irradiation. The X-ray diffraction analysis showed that the crystallite size of Cu-doped brookite TiO2 samples decreased with the increase of Cu concentration in the samples. The UV-Vis diffuse reflectance spectroscopy analysis of the Cu-doped TiO2 samples showed a shift to lower energy levels in the band gap compared with that of bare phase brookite TiO2. Cu doped brookite TiO2 can obviously improve its visible light photocatalytic activity because of Cu ions acting as electron acceptors and inhibiting electron-hole recombination. The brookite TiO2 sample with 7.0 wt.% Cu showed the highest photocatalytic activity and the corresponding degradation rate of MB (10 mg/L) reached to 87 % after visible light illumination for 120 min, much higher than that of bare brookite TiO2 prepared under the same conditions (78 %).
Słowa kluczowe
Wydawca
Rocznik
Strony
644--653
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
autor
  • College of Science, Civil Aviation University of China, Tianjin 300300, P.R. China
  • School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P.R. China
autor
  • School of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China
  • College of Science, Civil Aviation University of China, Tianjin 300300, P.R. China
autor
  • College of Science, Civil Aviation University of China, Tianjin 300300, P.R. China
autor
  • College of Science, Civil Aviation University of China, Tianjin 300300, P.R. China
autor
  • College of Science, Civil Aviation University of China, Tianjin 300300, P.R. China
  • College of Science, Civil Aviation University of China, Tianjin 300300, P.R. China
autor
  • College of Science, Civil Aviation University of China, Tianjin 300300, P.R. China
autor
  • College of Science, Civil Aviation University of China, Tianjin 300300, P.R. China
Bibliografia
  • [1] LINIC S., CHRISTOPHER P., INGRAM D.B., Nature Mater., 10 (2011), 911.
  • [2] JIANG C., ZHANG J., J. Mater. Sci. Technol., 29 (2013), 97.
  • [3] MA Y., WANG X.L., JIA Y.S., CHEN X.B., HAN H.X., LI C., Chem. Rev., 114 (2014), 9987.
  • [4] BAI J., ZHOU B.X., Chem. Rev., 114 (2014), 10131.
  • [5] DAHL M., LIU Y.D., YIN Y.D., Chem. Rev., 114 (2014), 9853.
  • [6] TEH C.M., MOHAMED A.R., J. Alloy. Compd., 509 (2011), 1648.
  • [7] CHOI W., TERMIN A., HOFFMANN M.R., Angew. Chem., 3 (1994), 1091.
  • [8] SIDDHAPARA K.S., SHAH D.V., Adv. Mater. Sci. Eng., 2014 (2014), 1.
  • [9] SUN L., LI J., WANG C.L., LI S.F., CHEN H.B., LIN C.J., Sol. Energ. Mater. Sol. C., 93 (2009), 1875.
  • [10] WILKE K., BREUER H.D., J. Photochem. Photobiol. A: Chem., 121 (1999), 49.
  • [11] HSIEH C.T., FAN W.S., CHEN W.Y., LIN J.Y., Sep. Purif. Technol., 67 (2009), 312.
  • [12] LO´ PEZ R., GO´MEZ R., LLANOS M.E., Catal. Today, 148 (2009), 103.
  • [13] CHEN R.F., ZHANG C.X., DENG J., SONG G.Q., Int. J. Min. Metall. Mater., 16 (2009), 220.
  • [14] TIAN B., LI C., GU F., JIANG H., HU Y., ZHANG J., Chem. Eng. J., 151 (2009), 220.
  • [15] YANG Y., WANG H., LI X., WANG C., Mater. Lett., 63 (2009), 331.
  • [16] ASILTURK M., SAYILKAN F., ARPA E., J. Photochem. Photobiol. A: Chem., 203 (2009), 64.
  • [17] DI PAOLA A., BELLARDITA M., PALMISANO L., Catalysts, 3(2013), 36.
  • [18] DENG Q.X., WEI M. D., DING X.K., JIANG L.L., YE B.H., WEI K.M., Chem. Commun., (2008), 3657.
  • [19] WANG Q., WEN Z.H., LI J.H., Adv. Funct. Mater., 16 (2006), 2141.
  • [20] LIN H.F., LI L.P., ZHAO M.L., HUANG X.S., CHEN X.M., LI G.S., YU R.C., J. Am. Chem. Soc., 134 (2012), 8328.
  • [21] OHNO Y., TOMITA K., KOMATSUBARA Y., TANIGUCHI T., KATSUMATA K., MATSUSHITA N., KOGURE T., OKADA K., Cryst. Growth Des., 11 (2011), 4831.
  • [22] HALL S.R., SWINERD V.M., NEWBY F.N., COLLINS A.M., MANN S., Chem. Mater., 18 (2006), 598.
  • [23] YOU Y.F., XU C.H., XU S.S., CAO S., WANG J.P., HUANG Y.B., SHI S.Q., Ceram. Int., 40 (2014), 8659.
  • [24] DAMBOURNET D., BELHAROUAK I., MA J.W., AMINE K., J. Mater. Chem., 21 (2011), 3085.
  • [25] KOMINAMI H., ISHII Y., KOHNO M., KONISHI S., KERA Y., OHTANI B., Catal. Lett., 91 (2003), 41.
  • [26] HALL A.S., KONDO A., MAEDA K., MALLOUK T.E., J. Am. Chem. Soc., 135 (2013), 16276.
  • [27] ESHAGHI A., ESHAGHI A., Thin Solid Films, 520 (2011), 1053.
  • [28] KANG W.J., SPANJERS C.S., RIOUX R.M., J. Mater. Chem. A, 1 (2013), 7717.
  • [29] BONSU P.O., LÜ X.M., XIE J.M., JIANG D.L., CHEN M., WEI X.J., React. Kinet. Mech. Cat., 107 (2012), 487.
  • [30] ES-SOUNI M., ES-SOUNI M., HABOUTI S., PFEIFFER N., LAHMAR A., DIETZE M., SOLTERBECK C., Adv. Funct. Mater., 20 (2010), 377.
  • [31] PEREGO C., WANG Y.H., DURUPTHY O., CASSAIGNON S., REVEL R., JOLIVET J., Acs Appl. Mater. Interf., 4 (2012), 752.
  • [32] PAOLA DI A., BELLARDITA M., MARCÌ G., PALMISANOA L., PARRINOA F., AMADELLIB R., Catal. Today, 161 (2011), 35.
  • [33] WANG Y.F., ZOU Y.L., SHANG Q.Q., TAN X., YU T., HUANG X.S., SHI W.X., XIE Y., YAN G., WANG X.Y., Trans. Tianjin Uni., 24 (2018), 326.
  • [34] NASIR M., XI Z.H., XING M.Y., ZHANG J.L., CHEN F., TIAN B.Z., BAGWASI S., J. Phys. Chem. C, 117 (2013), 9520.
  • [35] ZHENG Y.Q., SHI E.W., CUI S.X., LI W.J., HU X.F., J. Mater. Sci. Lett., 19 (2000), 1445.
  • [36] LIAO Y., QUE W., JIA Q., HE Y., ZHANG J., ZHONG P., J. Mater. Chem., 22 (2012), 7937.
  • [37] SZCZEPANKIEWICZ S.H., COLUSSI A.J., HOFFMANN M.R., J. Phys. Chem. B, 104 (2000), 9842.
  • [38] LIU G., SUN C., CHENG L., JIN Y., LU H., WANG L., SMITH S.C., LU G.Q., J. Phys. Chem. C, 113 (2009), 12317.
  • [39] XU W.C., ZHU S.L., LIANG Y.Q., CUI Z.D., YANG X.J., INOUE A., PAN D., Mater. Res. Bull., 73 (2016), 290.
  • [40] LI G.H., DIMITRIJEVIC N.M., CHEN L., RAJH T., GRAY K.A., J. Phys. Chem. C, 112 (2008), 19040.
  • [41] HU W.B., LI L.P., LI G.S., TANG C.L., SUN L., Cryst. Growth Des., 9 (2009), 3676.
  • [42] REDDY B.M., SREEKANTH P.M., YAMADA Y., XU Q., KOBAYASHI T., Appl. Catal. A, 228 (2002), 269.
  • [43] MORALESA J., SA´NCHEZA L., MARTI´NB F., RAMOS-BARRADOB J.R., SA´NCHEZ M., Thin Solid Films, 474 (2005), 133.
  • [44] VASQUEZ R.P., Surf. Sci. Spectra, 5 (1998), 262.
  • [45] CHOI W., TERRAIN A., HOFMANN M.R., Phys. Chem., 98(1994), 13669.
  • [46] RAJAMANNAN B., MUGUNDAN S., VIRUTHAGIRI G., PRAVEEN P., SHANMUGAM N., Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 118 (2014), 651.
  • [47] IRIE H., MIURA S., KAMIYA K., HASHIMOTO K., Chem. Phys. Lett., 457 (2008), 202.
  • [48] XU A.W., GAO Y., LIU H.Q., J. Catal., 207 (2002), 151.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47610e4e-7b86-4559-a7f9-aab1d5eda5e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.