PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The mechanism of CaCO3 in the gas-based direct reduction of a high-phosphorus oolitic iron ore

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gas-based direct reduction and magnetic separation process was applied in treating a high-phosphorus oolitic iron ore, of which phosphorus mainly occured as Fe3PO7 and apatite. The mechanism of CaCO3 was investigated using XRD, SEM-EDS, and mineral phase analysis. Results showed that when no CaCO3 was added, most of the iron minerals were reduced to metallic iron, while Fe3PO7 was reduced to elemental phosphorus and mixed with the metallic iron particles. When a small amount of CaCO3 was added, CaCO3 preferentially reacted with SiO2, Al2O3 and other components, preventing them from reacting with FeO and resulting in the increase of iron recovery. When the amount of CaCO3 reached 25%, apatite was produced from the reaction of CaO and Fe3PO7, which could be later removed by grinding and magnetic separation.
Rocznik
Strony
117--124
Opis fizyczny
Bibliogr. 26 poz.., rys. kolor.
Twórcy
autor
  • University of Science and Technology Beijing
autor
  • University of Science and Technology Beijing
autor
  • University of Science and Technology Beijing
autor
  • University of Science and Technology Beijing
autor
  • University of Science and Technology Beijing
Bibliografia
  • BAO, Q.P., GUO, L., GUO, Z.C., 2020. A novel direct reduction-flash smelting separation process of treating high phosphorous iron ore fines. Powder Technol. 377, 149-162.
  • BENKLI, Y.E., BOYRAZLI, MUSTAFA, SENOZ, G. M. L., CIZMECIOGLU, Z., 2018. Investigation of reduction of magnetite based carbon composite pellets under semi-fusion conditions. Physicochem. Probl. Mineral Pro. 54(3), 621-628.
  • CHA, J.W., KIM, D.Y., JUNG, S.M., 2015. Distribution behavior of phosphorus and metallization of iron oxide in carbothermic reduction of high-phosphorus iron ore. Metall. Mater. Trans. B. 46(5), 2165-2179.
  • CHENG, C.Y., MISRA, V.N., CLOUGH, J., MUNI R., 1999. Dephosphorisation of Western Australian iron ore by hydrometallurgical process. Miner. Eng. 12(9), 1083-1092.
  • GAO, P., AN, Y.X., LI, G.F., HAN, Y.X., 2020. Effect of particle size on reduction kinetics of hematite ore in suspension roaster Physicochem. Physicochem. Probl. Mineral Pro. 56(3), 449-459.
  • HUANG, W.S., YAN, L., WU, S.C., SUN T.C., 2020. Study on the process mineralogy of a high phosphorus ooliticiron ore in abroad. Met. Mine. 9, 137-141.
  • IONKOV, K., GAYDARDZHIEV, S., ARAUJO, A. C., BASTIN, D., LACOSTE, M., 2013. Amenability for processing of oolitic iron ore concentrate for phosphorus removal. Miner. Eng. 46-47, 119-127.
  • KEITH, Q., 2018. A review on the characterisation and processing of oolitic iron ores. Miner. Eng. 126, 89-102.
  • LI, G.H., RAO, M.J., OUYANG, C.Z., ZHANG, S.H., PENG Z.W., JIANG, T., 2015. Distribution characteristics of phosphorus in the metallic iron during solid-state reductive roasting of oolitic hematite ore. ISIJ Int. 55(11), 2304-2309.
  • LI, G.H., ZHANG, S.H., RAO, M.J., ZHANG, Y.B., JIANG, T., 2013. Effects of sodium salts on reduction roasting and Fe-P separation of high-phosphorus oolitic hematite ore. Int. J. Miner. Process. 124, 26-34.
  • LI, W.B., HAN, Y.X., LIU, X., SHAN, Y, LI, Y.J., 2019. Effect of fluidized magnetizing roasting on iron recovery and transformation of weakly magnetic iron mineral phase in iron tailings. Physicochem. Probl. Mineral Pro. 55(4), 906-916.
  • LI, X.H., KOU, J., SUN, T.C., WU, S.C., ZHAO, Y.Q., 2019. Effects of Temperature on Fe and Ti in Carbothermic Reduction of Vanadium Titanomagnetite with adding MgO. Physicochem. Probl. Mineral Pro. 55(4), 917-927.
  • LI, Y.L., SUN, T.C., XU, C.Y., LIU, Z.H., 2012. New dephosphorizing agent for phosphorus removal from high-phosphorus oolitic hematite ore in direct reduction roasting. J Cent. South. Univ. (Sci Technol). 43(3), 827-834.
  • SUN, Y.S., GAO, P., HAN, Y.X., REN, D.Z., 2013. Reaction behavior of iron minerals and metallic iron particles growth in coal-based Reduction of an oolitic iron ore. Ind. Eng. Chem. Res. 52(6), 2323-2329.
  • SUN, Y.S., HAN, Y.X., LI, Y.F., LI, Y.J., 2017. Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore. Int. J. Miner. Metall. Mater. 24(2), 123-129.
  • TANG, H.Q., QI, T.F., QIN, Y.Q., 2015. Production of low-phosphorus molten iron from high- phosphorus oolitic hematite using biomass char. JOM. 67(9), 1956-1965.
  • TANG, Z.D., GAO, P., SUN, Y.S., HAN, Y.X., LI, E.L., CHEN, J., ZHANG, Y.H., 2020. Studies on the fluidization performance of a novel fluidized bed reactor for iron ore suspension roasting. Powder Technol. 360, 649-657.
  • WANG, X.P., SUN, T.C., WU, S.C., HU, T.Y., RONG, L.K., 2020. Effects and mechanism of Bayer red mud on co-reduction with a saprolitic laterite ore to prepare ferronickel Physicochem. Physicochem. Probl. Mineral Pro.. 56(4), 2020, 641-652.
  • WU, S.C., SUN, T.C., LI, Z.Y., XU, C.Y., LI, X.H., 2021. Research progress of direct reduction-magnetic separation of high phosphorus iron ore. Met. Mine. 2, 58-64.
  • XU, Y., SUN, T.C., LIU, Z.G., LIU, Z.H., 2013. Phosphorus occurrence state and phosphorus removal research of a high phosphorous oolitic hematite by direct reduction roasting method. J. North. Univ (Nat. Sci.). 34(11), 1651-1655.
  • YAN, L., HUANG, W.S., WU, S.C., SUN, T.C., 2021. High-phosphorus oolitic iron ore processed with gas-based direct reduction and magnetic separation for iron increasing and phosphorus reduction. Min Metall Eng. 41(1), 72-75.
  • YANG, D.W., SUN, T.C., YANG, H.F., XU, C.Y., QI, C.Y., LI, Z.X., 2010. Dephosphorization mechanism in a roasting process for directreduction of high-phosphorus oolitic hematite in west Hubei Province. Chin. J. Univ. Sci. Technol. Bei. 32(8), 968-974.
  • YANG, M., ZHU, Q.S., FAN, C.L., XIE, Z.H., LI, H.Z., 2015. Roasting-induced phase change and its influence on phosphorus removal through acid leaching for high-phosphorus iron ore. Int. J. Miner. Metall. Mater. 22(4), 346-352.
  • YU, W., SUN, T.C., KOU, J., WEI, Y.X., XU, C.Y., LIU, Z.Z., 2013. The function of Ca(OH)2 and Na2CO3 as additive on the reduction of high-phosphorus oolitic hematite-coal mixed pellets. ISIJ Int. 53(3), 427-433.
  • ZHAO, Y.Q., SUN, T.C., ZHAO H.Y., LI, X.H., WANG, X.P., 2018. Effects of CaCO3 as additive on coal-based reduction of high-phosphorus oolitic hematite ore. ISIJ Int. 58(10), 1768-1774.
  • ZHU, D.Q., CHUN, T.J., PAN, J., LU, L.M., HE, Z., 2013. Upgrading and dephosphorization of Western Australian iron ore using reduction roasting by adding sodium carbonate. Int. J. Miner. Metall. Mater. 20(6), 505-513.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-475481b2-af4f-4a83-98a6-91b81e9138f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.