PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phytoextraction of Cr by maize (Zea mays L.) : the role of plant growth promoting endophyte and citric acid under polluted soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High chromium (Cr) toxicity has turned into a serious environmental concern. Cr contaminated agronomic soils negatively affect the growth and yield of crops. Current research was conducted to enhance the phytoextraction potential of maize by using Burkholderia vietnamiensis and citric acid (CA). Plants were subjected to three concentrations of Cr (0.86, 350, and 500 ppm). A pot experiment was conducted under greenhouse conditions with completely randomized design (CRD). After 72 days of experiment, plants were harvested to analyze the morphological and biochemical attributes of soil, bacteria and plant. Results revealed that plant fresh, dry biomass, root, shoot length and chlorophyll contents significantly increased by 56%, 50%, 58%, 78% and 60%, respectively, at 500 ppm Cr concentration in combine treatment of B. vietnamiensis and CA. Maize plants treated with both B. vietnamiensis and CA significantly increased the bioaccumulation (BA) of Cr up to 50% and translocation factor (TF) by 31%. Furthermore, superoxide dismutase (SOD), proline and peroxidase dismutase (POD) activities in leaves were markedly increased by 30%, 42% and 15%, respectively, when treated with CA. Current study reveals that exogenous co-application of B. vietnamiensis + CA enhance plant growth by alleviating heavy metal stress and accelerate the phytoextraction of Cr. Taking into account the heavy metal tolerance and accumulation capacity, Zea mays is suitable for phytoremediation of contaminated soils in combination with B. vietnamiensis and CA.
Rocznik
Strony
73--82
Opis fizyczny
Bibliogr. 59 poz., tab., wykr.
Twórcy
autor
  • Quaid-i-Azam University, Pakistan, Department of Plant Sciences
autor
  • Hazara University Mansehra, Pakistan, Department of Genetics
autor
  • Quaid-i-Azam University, Pakistan, Department of Plant Sciences
autor
  • Quaid-i-Azam University, Pakistan, Department of Plant Sciences
autor
  • Quaid-i-Azam University, Pakistan, Department of Plant Sciences
  • Quaid-i-Azam University, Pakistan, Department of Plant Sciences
Bibliografia
  • 1. Ahmad, I., Akhtar, M.J., Asghar, H.N., Ghafoor, U. & Shahid, M. (2016). Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake, Journal of Plant Growth Regulation, 35, pp. 303–315.
  • 2. Akra, M.S., Shahid, M., Tariq, M., Azeem, M., Javed, M.T., Saleem, S. & Riaz, S. (2016). Deciphering Staphylococcus sciuri SAT-17 mediated anti-oxidative defense mechanisms and growth modulations in salt stressed maize (Zea mays L.), Frontiers in Microbiology, 7, 867.
  • 3. Ali, S., Bharwana, S. A., Rizwan, M., Farid, M., Kanwal, S., Ali, Q., Ibrahim, M., Gill, R.A. & Khan, M. D. (2015). Fulvic acid mediates chromium (Cr) tolerance in wheat (Triticum aestivum L.) through lowering of Cr uptake and improved antioxidant defense system, Environmental Science and Pollution Research, 22, pp. 10601–10609.
  • 4. Angus, A.A., Agapakis, C.M., Fong, S., Yerrapragada, S., Estrada-De Los Santos, P., Yang, P., Song, N., Kano, S., Caballero-Mellado, J. & De Faria, S.M. (2014). Plant-associated symbiotic Burkholderia species lack hallmark strategies required in mammalian pathogenesis, PloS one, 9, e83779.
  • 5. Audet, P. & Charest, C. (2007). Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta-analytical and conceptual perspectives, Environmental Pollution, 147, 3, pp. 609–614.
  • 6. Bano, M. & Bhatt, D.K. (2010). Ameliorative effect of a combination of vitamin E, vitamin C, α-lipoic acid and stilbene resveratrol on lindane induced toxicity in mice olfactory lobe and cerebrum, Indian Journal of Experimental Biology, 48, pp. 150–158.
  • 7. Baran, A. & Wieczorek, J. (2015). Application of geochemical and ecotoxicity indices for assessment of heavy metals content in soils, Archives of Environmental Protection, 41, pp. 54–63.
  • 8. Bates, L., Waldren, R. & Teare, I. (1973). Rapid determination of free proline for water-stress studies, Plant and soil, 39, pp. 205–207.
  • 9. Brown, S.L., Chaney, R.L., Angle, J.S. & Baker, A.J.M. (1994). Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-and cadmium-contaminated soil, Journal of Environmental Quality, 23, 6, pp. 1151–1157.
  • 10. Chen, Z.-J., Sheng, X.-F., He, L.-Y., Huang, Z. & Zhang, W.-H. (2013). Effects of root inoculation with bacteria on the growth, Cd uptake and bacterial communities associated with rape grown in Cd-contaminated soil, Journal of Hazardous Materials, 244, pp. 709–717.
  • 11. Ensink, J.H., Mahmood, T., Van der Hoek, W., Raschid-Sally, L. & Amerasinghe, F.P. (2004). A nationwide assessment of wastewater use in Pakistan: An obscure activity or a vitally important one?, Water Policy, 6, pp. 197–206.
  • 12. Estefan, G., Sommer, R., and Ryan, J. (2013). Methods of soil, plant, and water analysis. A manual for the West Asia and North Africa region, pp. 170–176.
  • 13. Faisal, M., Hameed, A. & Hasnain, S. (2005). Chromium-resistant bacteria and cyanobacteria: impact on Cr (VI) reduction potential and plant growth, Journal of Industrial Microbiology and Biotechnology, 32, pp. 615–621.
  • 14. Gill, R.A., Zang, L., Ali, B., Farooq, M.A., Cui, P., Yang, S., Ali, S. & Zhou, W. (2015). Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L., Chemosphere, 120, pp. 154–164.
  • 15. Glick, B.R. (2010). Using soil bacteria to facilitate phytoremediation, Biotechnology Advances, 28, pp. 367–374.
  • 16. Haouari, C.C., Nasraoui, A.H., Bouthour, D., Houda, M.D., Daieb, C.B., Mnai, J. & Gouia, H. (2012). Response of tomato (Solanum lycopersicon) to cadmium toxicity: growth, element uptake, chlorophyll content and photosynthesis rate, African Journal of Plant Science, 6, pp. 1–7.
  • 17. Hegedüs, A., Erdei, S. & Horváth, G. (2001). Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress, Plant Science, 160, pp. 1085–1093.
  • 18. Husen, P., Tarasov, K., Katafiasz, M., Sokol, E., Vogt, J., Bauppmart, J., Nitsch, R., Ekroos, K. & Ejsing, C.S. (2013). Analysis of lipid experiments (ALEX): a software framework for analysis of high-resolution shotgun lipidomics data, PloS one, 8, e79736.
  • 19. Hussain, A., Abbas, N., Arshad, F., Akram, M., Khan, Z.I., Ahmad, K., Mansha, M. & Mirzaei, F. (2013). Effects of diverse doses of Lead (Pb) on different growth attributes of Zea-Mays L, Agricultural Sciences, 4, pp. 262–265.
  • 20. Jankowski, C.R., Vo, H.-D. & Lippmann, R.P. (1995). A comparison of signal processing front ends for automatic word recognition, IEEE Transactions on Speech and Audio processing, 3, pp. 286–293.
  • 21. Khan, A., Kuek, C., Chaudhry, T., Khoo, C. & Hayes, W. (2000). Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation, Chemosphere, 41, pp. 197–207.
  • 22. Khan, A.G. (2005). Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation, Journal of Trace Elements in Medicine and Biology, 18, pp. 355–364.
  • 23. Khan, M.U., Sessitsch, A., Harris, M., Fatima, K., Imran, A., Arslan, M., Shabir, G., Khan, Q.M. & Afzal, M. (2014). Cr-resistant rhizo-and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils, Frontiers in Plant Science, 5, 755.
  • 24. Khan, N. & Bano, A. (2016). Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation, International Journal of Phytoremediation, 18, pp. 211–221.
  • 25. Leitenmaier, B. & Küpper, H. (2013). Compartmentation and complexation of metals in hyperaccumulator plants, Frontiers in Plant Science, 4, 374.
  • 26. Li, C., Xiao, B., Wang, Q., Yao, S. & Wu, J. (2014). Phytoremediation of Zn-and Cr-contaminated soil using two promising energy grasses, Water, Air & Soil Pollution, 225, 2027.
  • 27. Luo, S.-L., Chen, L., Chen, J.-L., Xiao, X., Xu, T.-Y., Wan, Y., Rao, C., Liu, C.-B., Liu, Y.-T. and Lai, C. (2011). Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation, Chemosphere, 85, pp. 1130–1138.
  • 28. Malik, R.N., Husain, S. & Nazir, I. (2010). Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan, Pakistan Journal of Botany, 42, pp. 291–301.
  • 29. Markowicz, A., Płaza, G. & Piotrowska-Seget, Z. (2016). Activity and functional diversity of microbial communities in long-term hydrocarbon and heavy metal contaminated soils, Archives of Environmental Protection, 42, pp. 3–11.
  • 30. Martina, L. Acclimation of photosynthesis to different growth temperatures in Betula pendula, degree project for Bachelor of Science with a major in Biology, Department of Biological and Environmental Sciences University of Gothenburg.
  • 31. McLean, E. (1982). Soil pH and lime requirement, Methods of soil analysis. Part 2. Chemical and microbiological properties, pp. 199–224.
  • 32. Meng, H., Hua, S., Shamsi, I.H., Jilani, G., Li, Y. & Jiang, L. (2009). Cadmium-induced stress on the seed germination and seedling growth of Brassica napus L., and its alleviation through exogenous plant growth regulators, Plant Growth Regulation, 58, pp. 47–59.
  • 33. Miché, L. & Balandreau, J. (2001). Effects of rice seed surface sterilization with hypochlorite on inoculated Burkholderia vietnamiensis, Applied and Environmental Microbiology, 67, pp. 3046–3052.
  • 34. Mishra, P. & Koehler, M.J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge, Teachers college record, 108, 1017.
  • 35. Najeeb, U., Jilani, G., Ali, S., Sarwar, M., Xu, L. & Zhou, W. (2011). Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid, Journal of Hazardous Materials, 186, pp. 565–574.
  • 36. Naveed, M., Mitter, B., Yousaf, S., Pastar, M., Afzal, M. & Sessitsch, A. (2014). The endophyte Enterobacter sp. FD17: a maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics, Biology and Fertility of Soils, 50, pp. 249–262.
  • 37. Nelson, D. & Sommers, L.E. (1982). Total carbon, organic carbon, and organic matter, Methods of soil analysis. Part 2. Chemical and microbiological properties, pp. 539–579.
  • 38. Nguyen, C., Yan, W., Le Tacon, F. & Lapeyrie, F. (1992). Genetic variability of phosphate solubilizing activity by monocaryotic and dicaryotic mycelia of the ectomycorrhizal fungus Laccaria bicolor (Maire) PD Orton, Plant and Soil, 143, pp. 193–199.
  • 39. Paungfoo-Lonhienne, C., Lonhienne, T.G., Yeoh, Y.K., Webb, R.I., Lakshmanan, P., Chan, C.X., Lim, P. E., Ragan, M.A., Schmidt, S. & Hugenholtz, P. (2014). A new species of Burkholderia isolated from sugarcane roots promotes plant growth, Microbial Biotechnology, 7, pp. 142–154.
  • 40. Putwattana, N., Kruatrachue, M., Kumsopa, A. & Pokethitiyook, P. (2015). Evaluation of organic and inorganic amendments on maize growth and uptake of Cd and Zn from contaminated paddy soils, International Journal of Phytoremediation, 17, pp. 165–174.
  • 41. Qin, S., Zhang, Y.J., Yuan, B., Xu, P.Y., Xing, K., Wang, J. & Jiang, J.H. (2014). Isolation of ACC deaminase-producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth-promoting activity under salt stress, Plant Soil, 374(1–2), pp. 753–766.
  • 42. Qureshi, M., Ahmad, Z., Akhtar, N., Iqbal, A., Mujeeb, F. & Shakir, M. (2012). Role of phosphate solubilizing bacteria (PSB) in enhancing P availability and promoting cotton growth, The Journal of Animal & Plant Sciences, 22, pp. 204–210.
  • 43. Rafati, M., Khorasani, N., Moattar, F., Shirvany, A., Moraghebi, F. & Hosseinzadeh, S. (2011). Phytoremediation potential of Populus alba and Morus alba for cadmium, chromium and nickel absorption from polluted soil, International Journal of Environmental Research, 5, pp. 961–970.
  • 44. Ramos, R.L., Jacome, L.B., Barron, J.M., Rubio, L.F. & Coronado, R.G. (2002). Adsorption of zinc (II) from an aqueous solution onto activated carbon, Journal of Hazardous Materials, 90, pp. 27–38.
  • 45. Reddy, L., Nigam, S. & Reddy, A. (1995). Stability of pod yield in foliar disease-resistant groundnut varieties, International Arachis Newsletter, 15, pp. 9–11.
  • 46. Rodriguez, E., Santos, C., Azevedo, R., Moutinho-Pereira, J., Correia, C. & Dias, M.C. (2012). Chromium (VI) induces toxicity at different photosynthetic levels in pea, Plant Physiology and Biochemistry, 53, pp. 94–100.
  • 47. Rogers, A., McDonald, K., Muehlbauer, M.F., Hoffman, A., Koenig, K., Newman, L., Taghavi, S. & Lelie, D. (2012). Inoculation of hybrid poplar with the endophytic bacterium Enterobacter sp.638 increases biomass but does not impact leaf level physiology, GCB Bioenergy, 4, pp. 364–370.
  • 48. Sagar, S., Dwivedi, A., Yadav, S., Tripathi, M. & Kaistha, S.D. (2012). Hexavalent chromium reduction and plant growth promotion by Staphylococcusarlettae Strain Cr11, Chemosphere, 86, pp. 847–852.
  • 49. Scholz, W. & Lucas, M. (2003). Techno-economic evaluation of membrane filtration for the recovery and re-use of tanning chemicals, Water Research, 37, pp. 1859–1867.
  • 50. Shahid, M., Dumat, C., Silvestre, J. & Pinelli, E. (2012). Effect of fluvic acids on lead-induced oxidative stress to metal sensitive Vicia faba L. plant, Biology and Fertility of Soils, 48, pp. 689–697.
  • 51. Shahid, M.N. & Abbasi, N.A. (2011). Effect of bee wax coatings on physiological changes in fruits of sweet orange CV. “blood red”, Sarhad Journal of Agriculture, 27, pp. 385–394.
  • 52. Sumanta, N., Haque, C.I., Nishika, J. & Suprakash, R. (2014). Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents, Research Journal of Chemical Sciences, 4(9), pp. 63–69.
  • 53. Ullah, A., Heng, S., Munis, M.F.H., Fahad, S. & Yang, X. (2015). Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review, Environmental and Experimental Botany, 117, pp. 28–40.
  • 54. Wan, Y., Luo, S., Chen, J., Xiao, X., Chen, L., Zeng, G., Liu, C. & He, Y. (2012). Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L, Chemosphere, 89, pp. 743–750.
  • 55. Wuana, R.A. & Okieimen, F.E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation, Isrn Ecology, Article ID 402647, 20 pages.
  • 56. Yáñez, A. & Rodrigo, G.J. (2002). Intranasal corticosteroids versus topical H1 receptor antagonists for the treatment of allergic rhinitis: a systematic review with meta-analysis, Annals of Allergy, Asthma & Immunology, 89, pp. 479–484.
  • 57. Yasmeen, T., Ali, Q., Islam, F., Noman, A., Akram, M.S. & Javed, M.T. (2014). Biologically treated wastewater fertigation induced growth and yield enhancement effects in Vigna radiata L, Agricultural Water Management, 146, pp. 124–130.
  • 58. Yu, X.-Z., Feng, Y.-X. & Liang, Y.-P. (2016). Kinetics of phytoaccumulation of hexavalent and trivalent chromium in rice seedlings, International Biodeterioration & Biodegradation, 128, pp. 72–77.
  • 59. Zayed, A.M. & Terry, N. (2003). Chromium in the environment: factors affecting biological remediation, Plant and Soil, 249, pp. 139–156.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47491233-19a5-4ca7-af4c-f457cb6dd245
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.