PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling Hydrocarbons Cold-Start Emission from Passenger Cars

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to present the results of mathematically modelling the influence of ambient temperature on hydrocarbons (HCs, comprised of methane and non-methane volatile organic compounds) in cold-start emissions from passenger cars (PCs) for different fuel types, vehicle segments including hybrid vehicles, and the Euro standard. In this article the simulations are performed using COPERT software, assuming ambient temperatures from 20◦C to +30◦C, with 5◦C intervals. The modelling results presented show that a change in ambient temperature has a significant effect on hydrocarbons in cold-start emissions. Furthermore, our results show that hydrocarbons emissions are sensitive to ambient temperature fluctuations, and dependent on fuel type, vehicle segment, and the Euro standard.
Twórcy
  • Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, ul. Narbutta 84, 02-524 Warsaw, Poland
  • Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, ul. Nowowiejska 20, 00-653 Warsaw, Poland
  • Institute of Environmental Protection - National Research Institute, ul. Chmielna 132/134, 00-805 Warsaw, Poland
  • Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, ul. Narbutta 84, 02-524 Warsaw, Poland
Bibliografia
  • 1. André J.M.; Joumard R. (2005). Modelling of cold start excess emissions for passenger cars. Tech. rep.; INRETS; hal-00917071. https://hal.archivesouvertes.fr/hal-00917071/file/AndreI_coldstart_ LTE0509.pdf
  • 2. Bielaczyc P.; Szczotka A.; Woodburn J.: (2011). The effect of a low ambient temperature on the cold-start emissions and fuel consumption of passenger cars. Proceedings of the Institution of Mechanical Engineers. Part D: Journal of Automobile Engineering, 225, 1253–1264. DOI: 10.1177/0954407011406613.
  • 3. Bielaczyc P.; Szczotka A.; Woodburn J. (2013). An overview of cold start emissions from direct injection spark-ignition and compression ignition engines of light duty vehicles at low ambient temperatures. Combustion Engines, 154 (3), 96–103.
  • 4. CITEAIR; Air Quality Now – Pollution Basics – Definition (2007). URL https://www.airqualitynow.eu/pollution_home.php
  • 5. Dardiotis C.; Martini G.; Marotta A.; Manfredi U. (2013). Low-temperature cold-start gaseous emissions of late technology passenger cars. Applied Energy, 111, 468–478. DOI: 10.1016/j.apenergy.2013.04.093.
  • 6. Drozd G.T.; Zhao Y.; Saliba G.; Frodin B.; Maddox C.; Weber R. J.; Chang M.C.O.; Maldonado H.; Sardar S.; Robinson A. L.; Goldstein A. H. (2016). Time Resolved Measurements of Speciated Tailpipe Emissions from Motor Vehicles: Trends with Emission Control Technology, Cold Start Effects, and Speciation. Environ. Sci. Technol, 50, 13592–13599, DOI: 10.1021/acs.est.6b04513
  • 7. EEA; EMEP/EEA Air Pollutant Emission Inventory Guidebook (2019). DOI:10.2800/293657.
  • 8. EEA; Explaining road transport emissions (A nontechnical guide). (2016). DOI:10.2800/71804.
  • 9. EMISIA SA. Copert 5: Manual (2019). https://copert.emisia.com/manual/
  • 10. Fameli K.; Assimakopoulos V. (2016). The new open Flexible Emission Inventory for Greece and the Greater Athens Area (FEI-GREGAA): account of pollutant sources and their importance from 2006 to 2012. Atmospheric Environment, 137, 17– 37. DOI:10.1016/j.atmosenv.2016.04.004.
  • 11. Kostelecka A.; Kulpa T. (2016). The Warsaw Traffic Study in 2015 along with the development of a traffic model. Synthesis http://www.transport. um.warszawa.pl/sites/default/files/WBR%20 2015%20SYNTHESIS%20EN.pdf
  • 12. Laskowski P.; Zasina D.; Zimakowska-Laskowska M.; Zawadzki J.; Warchałowski A. (2019). Vehicle Hydrocarbons’ Emission Characteristics Determined Using the Monte Carlo Method. Environmental Modelling & Assessment, 24, 311–318. DOI: 10.1007/s10666-018-9640-4.
  • 13. Laurikko J.: 2008. Cold-start emissions and excess fuel consumption at low ambient temperatures – Assessment of EU2, EU3 and EU4 passenger car performances, In: Proceedings of FISITA 2008 World Automotive Congress. Germany. 14–19 September 2008. paper: F2008-06-049
  • 14. Li J.; Gong C.; Liu B.; Su Y.; Dou H.; Liu X. (2009). Combustion and Hydrocarbon (HC) Emissions from a Spark-Ignition Engine Fueled with Gasoline and Methanol during Cold Start. Energy Fuels 23, 4937– 4942, DOI: 10.1021/ef900502e
  • 15. NCEM: Poland’s Informative Inventory Report 2020. Submission under the UN ECE Convention on Long-range Transboundary Air Pollution and Directive (EU) 2016/2284. Air pollutant emissions in Poland 1990–2018; available at https://ceip. at/ms/ceip_home1/ceip_home/status_reporting/2020_submissions/.
  • 16. Ntziachristos L.; Gkatzoflias D.; Kouridis C.; Samaras Z.: Copert. (2009). A European Road Transport Emission Inventory Model. Springer, Ch. 37, 491–504. DOI: 10.1007/978-3-540-88351-7_37.
  • 17. R Core Team; R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing; Vienna; Austria (2020). URL https:// www.R-project.org/
  • 18. Resetar M.; Pejic G.; Lulic Z.: 2017. Road Transport Emissions of Passenger Cars in the Republic of Croatia. In: Digital proceedings of the 8th European Combustion Meeting, 18–21 April 2017; Dubrovnik; Croatia, 2553–2558. https://bib.irb.hr/ datoteka/878082.Road_Transport_Emissions_of_ Passenger_Cars_in_the_Republic_of_Croatia.pdf
  • 19. Smart City. Wrocław Investigates Traffic (WBR) Report [in Polish] (2019). https://wroclawbadaruch.pl/
  • 20. Song X.; Hao Y.; Zhang C.; Peng J.; Zhu X. (2016). Vehicular emission trends in the PanYangtze River Delta in China between 1999 and 2013. Journal of Cleaner Production, 137, 1045–1054. DOI:10.1016/j.jclepro.2016.07.197.
  • 21. Suarez-Bertoa R.; Astorga C. (2018). Impact of cold temperature on Euro 6 passenger car emissions. Environmental Pollution, 234, 318–329. DOI: 10.1016/j. envpol.2017.10.096.
  • 22. Weeberb J.; Koutrakis P.; Roig H. (2015). Spatial distribution of vehicle emission inventories in the Federal District. Brazil. Atmospheric Environment, 112, 32–39. DOI:10.1016/j.atmosenv.2015.04
  • 23. Weilenmann M.; Favez J.Y.; Alvarez R. (2005). Coldstart emissions of modern passenger cars at different low ambient temperatures and their evolution over vehicle legislation categories. Atmospheric Environment 43, 2419–2429. DOI:10.1016/j.atmosenv.2009.02.005.
  • 24. Weilenmann M.; Soltic P.; Saxer C.; Forss A.M.; Heeb N. (2005). Regulated and nonregulated diesel and gasoline cold start emissions at different temperatures. Atmospheric Environment, 39, 2433– 2441. DOI:10.1016/j.atmosenv.2004.03.081.
  • 25. Zimakowska-Laskowska M.; Laskowski P.; Zasina D. (2020). The Impact of the Fleet Age Structure on the Cold-Start Emission. Case Study of the Polish Passenger C and Light Commercial Vehicles. In: SAE Technical Paper, ID 2020-01-2091, p. 8. DOI:10.4271/2020-01-2091.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4748f97d-607b-43d8-b7f1-4d41d2669818
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.