PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Classification of epileptic EEG signals using PSO based artificial neural network and tunable-Q wavelet transform

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Epilepsy is a widely spread neurological disorder caused due to the abnormal excessive neural activity which can be diagnosed by inspecting the electroencephalography (EEG) signals visually. The manual inspection of EEG signals is subjected to human error and is a tedious process. Further, an accurate diagnosis of generalized and focal epileptic seizures from normal EEG signals is vital for the supervision of pertinent treatment, life advancement of the subjects, and reduction in cost for the subjects. Hence the development of automatic detection of generalized and focal epileptic seizures from normal EEG signals is important. An approach based on tunable-Q wavelet transform (TQWT), entropies, Particle Swarm Optimization (PSO) and Artificial Neural Network (ANN) is proposed in this work for detection of epileptic seizures and its types. Two EEG databases namely, Karunya Institute of Technology and Sciences (KITS) EEG database and Temple University Hospital (TUH) database consisting of normal, generalized and focal EEG signals is used in this work to analyze the performance of the proposed approach. Initially, the EEG signals are decomposed into sub-bands using TQWT and the non-linear features like log energy entropy, Shannon entropy and Stein's unbiased risk estimate (SURE) entropy is computed from each sub-band. The informative features from the computed feature vectors are selected using PSO and fed into ANN for the classification of EEG signals. The proposed algorithm for KITS database achieved a maximum accuracy of 100% for four experimental cases namely, (i) normal-focal, (ii) normal-generalised, (iii) normal-focal + generalised and (iv) normal-focal-generalised. The TUH database achieved an accuracy of 95.1%, 97.4%, 96.2% and 88.8% for the four experimental cases. The proposed approach is promising and able to discriminate the epileptic seizure types with satisfactory classification performance.
Twórcy
  • Department of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore - 641 114, India
  • Department of Electrical and Electronics Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India
  • Department of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India
autor
  • Department of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India
  • Department of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India
Bibliografia
  • [1] Zhang T, Chen W, Li M. Fuzzy distribution entropy and its application in automated seizure detection technique. Biomed Signal Process Control 2018;39:360–77. http://dx.doi.org/10.1016/j.bspc.2017.08.013.
  • [2] Krook-Magnuson E, Soltesz I. Beyond the hammer and the scalpel: selective circuit control for the epilepsies. Nat Neurosci 2015;18:331–8. http://dx.doi.org/10.1038/nn.3943.
  • [3] Sharma R, Kumar M, Pachori RB, Acharya UR. Decision support system for focal EEG signals using tunable-Q wavelet transform. J Comput Sci 2017;20:52–60. http://dx.doi.org/10.1016/j.jocs.2017.03.022.
  • [4] Pati S, Alexopoulos AV. Pharmacoresistant epilepsy: from pathogenesis to current and emerging therapies. Cleve Clin J Med 2010;77:457–67. http://dx.doi.org/10.3949/ccjm.77a.09061.
  • [5] Das AB, Bhuiyan MIH. Discrimination and classification of focal and non-focal EEG signals using entropy-based features in the EMD-DWT domain. Biomed Signal Process Control 2016;29:11–21. http://dx.doi.org/10.1016/j.bspc.2016.05.004.
  • [6] Altunay S, Telatar Z, Erogul O. Epileptic EEG detection using the linear prediction error energy. Expert Syst Appl 2010;37:5661–5. http://dx.doi.org/10.1016/j.eswa.2010.02.045.
  • [7] Joshi V, Bilas R, Vijesh A. Biomedical signal processing and control classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomed Signal Process Control 2014;9:1–5. http://dx.doi.org/10.1016/j.bspc.2013.08.006.
  • [8] Polat K, Günes S. Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl Math Comput 2007;187:1017–26. http://dx.doi.org/10.1016/j.amc.2006.09.022.
  • [9] Duque-muñoz L, Espinosa-oviedo JJ, Castellanos- dominguez CG. Identification and monitoring of brain activity based on stochastic relevance analysis of short – time EEG rhythms. Biomed Eng Online 2014;1–20. http://dx.doi.org/10.1186/1475-925X-13-123.
  • [10] Sairamya NJ, George ST. Automated detection of epileptic seizure using histogram of oriented gradients for analysing time frequency images of EEG signals. Int Conf Next Gener Comput Technol 2018;932–43.
  • [11] Ghosh-Dastidar S, Adeli H, Dadmehr N. Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Trans Biomed Eng 2007;54:1545–51. http://dx.doi.org/10.1109/TBME.2007.891945.
  • [12] Adeli H, Ghosh-Dastidar S, Dadmehr N. A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans Biomed Eng 2007;54:205–11. http://dx.doi.org/10.1109/TBME.2006.886855.
  • [13] Ocak H. Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst Appl 2009;36:2027–36. http://dx.doi.org/10.1016/j.eswa.2007.12.065.
  • [14] Chen D, Wan S, Xiang J, Bao FS. A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG. PLoS One 2017;12e0173138. http://dx.doi.org/10.1371/journal.pone.0173138.
  • [15] Sharma M, Pachori RB, Rajendra Acharya U. A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension. Pattern Recognit Lett 2017;94:172–9. http://dx.doi.org/10.1016/J.PATREC.2017.03.023.
  • [16] Guo L, Rivero D, Pazos A. Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J Neurosci Methods 2010;193:156–63. http://dx.doi.org/10.1016/j.jneumeth.2010.08.030.
  • [17] Swami P, Gandhi TK, Panigrahi BK, Tripathi M, Anand S. A novel robust diagnostic model to detect seizures in electroencephalography. Expert Syst Appl 2016;56:116–30. http://dx.doi.org/10.1016/j.eswa.2016.02.040.
  • [18] Ashokkumar SRA, MohanBabu GM, Anupallavi SA. A KSOM based neural network model for classifying the epilepsy using adjustable analytic wavelet transform. Multimed Tools Appl 2019;1–22. http://dx.doi.org/10.1007/s11042-019-7359-0.
  • [19] Bajaj V, Pachori RB. Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Trans Inf Technol Biomed 2012;16:1135–42. http://dx.doi.org/10.1109/TITB.2011.2181403.
  • [20] Riaz F, Hassan A, Rehman S, Niazi IK, Dremstrup K. EMD based temporal and spectral features for the classification of EEG signals using supervised learning. IEEE Trans Neural Syst Rehabil Eng 2015. http://dx.doi.org/10.1109/TNSRE.2015.2441835. PP:1.
  • [21] Bhattacharyya A, Pachori RB. A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform. IEEE Trans Biomed Eng 2017;64:2003–15. http://dx.doi.org/10.1109/TBME.2017.2650259.
  • [22] Oweis RJ, Abdulhay EW. Seizure classification in EEG signals utilizing Hilbert-Huang transform. Biomed Eng Online 2011;10:1–15. http://dx.doi.org/10.1186/1475-925X-10-38.
  • [23] Sharma M, Rajendra Acharya U. A new method to identify coronary artery disease with ECG signals and time time-frequency concentrated antisymmetric biorthogonal wavelet filter bank. Pattern Recognit Lett 2019;125:235–40. http://dx.doi.org/10.1016/j.patrec.2019.04.014.
  • [24] Sharma M, Tan RS, Acharya UR. Detection of shockable ventricular arrhythmia using optimal orthogonal wavelet filters. Neural Comput Appl 2019. http://dx.doi.org/10.1007/s00521-019-04061-8.
  • [25] Sharma M, Bhurane AA, Rajendra Acharya U. MMSFL-OWFB: a novel class of orthogonal wavelet filters for epileptic seizure detection. Knowledge-Based Syst 2018;160:265–77. http://dx.doi.org/10.1016/j.knosys.2018.07.019.
  • [26] Sharma M, Shah S, Achuth PV. A novel approach for epilepsy detection using time-frequency localized bi-orthogonal wavelet filter. J Mech Med Biol 2019;19. http://dx.doi.org/10.1142/S0219519419400074.
  • [27] Sharma M, Raval M, Acharya UR. A new approach to identify obstructive sleep apnea using an optimal orthogonal wavelet filter bank with ECG signals. Informatics Med Unlocked 2019;16100170. http://dx.doi.org/10.1016/j.imu.2019.100170.
  • [28] Sharma M, Acharya UR. Analysis of knee-joint vibroarthographic signals using bandwidth-duration localized three-channel filter bank. Comput Electr Eng 2018;72:191–202. http://dx.doi.org/10.1016/j.compeleceng.2018.08.019.
  • [29] Sharma M, Achuth PV, Deb D, Puthankattil SD, Acharya UR. An automated diagnosis of depression using three-channel bandwidth-duration localized wavelet filter bank with EEG signals. Cogn Syst Res 2018;52:508–20. http://dx.doi.org/10.1016/j.cogsys.2018.07.010.
  • [30] Sharma M, Tan RS, Acharya UR. A novel automated diagnostic system for classification of myocardial infarction ECG signals using an optimal biorthogonal filter bank. Comput Biol Med 2018;102:341–56. http://dx.doi.org/10.1016/j.compbiomed.2018.07.005.
  • [31] Sharma M, Goyal D, Achuth PV, Acharya UR. An accurate sleep stages classification system using a new class of optimally time-frequency localized three-band wavelet filter bank. Comput Biol Med 2018;98:58–75. http://dx.doi.org/10.1016/j.compbiomed.2018.04.025.
  • [32] Sharma M, Achuth AP, Pachori RB, Gadre VM. A parametrization technique to design joint time–frequency optimized discrete-time biorthogonal wavelet bases. Signal Processing 2017;135:107–20. http://dx.doi.org/10.1016/j.sigpro.2016.12.019.
  • [33] Sharma M, Dhere A, Pachori RB, Gadre VM. Optimal duration-bandwidth localized antisymmetric biorthogonal wavelet filters. Signal Processing 2017;134:87–99. http://dx.doi.org/10.1016/j.sigpro.2016.11.017.
  • [34] Sharma M, Dhere A, Pachori RB, Acharya UR. An automatic detection of focal EEG signals using new class of time– frequency localized orthogonal wavelet filter banks. Knowledge-Based Syst 2017;118:217–27. http://dx.doi.org/10.1016/j.knosys.2016.11.024.
  • [35] Chen D, Wan S, Bao FS. Epileptic focus localization using discrete wavelet transform based on interictal intracranial EEG. IEEE Trans Neural Syst Rehabil Eng 2017;25:413–25. http://dx.doi.org/10.1109/TNSRE.2016.2604393.
  • [36] Gandhi T, Panigrahi BK, Anand S. A comparative study of wavelet families for EEG signal classification. Neurocomputing 2011;74:3051–7. http://dx.doi.org/10.1016/j.neucom.2011.04.029.
  • [37] Güler NF, Übeyli ED, Güler I. Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst Appl 2005;29:506–14. http://dx.doi.org/10.1016/j.eswa.2005.04.011.
  • [38] Übeyli ED. Lyapunov exponents/probabilistic neural networks for analysis of EEG signals. Expert Syst Appl 2010;37:985–92. http://dx.doi.org/10.1016/j.eswa.2009.05.078.
  • [39] Lehnertz K, Elger CE. Spatial-temporal dynamics of the primary epilepticogenic area in temporal lobe epilepsy characterized by neuronal complexity loss. Enceph Clin Neurophysiol 1995;95:108–17.
  • [40] Raghu S, Sriraam N, Kumar GP. Classification of epileptic seizures using wavelet packet log energy and norm entropies with recurrent Elman neural network classifier. Cogn Neurodyn 2017;11:51–66. http://dx.doi.org/10.1007/s11571-016-9408-y.
  • [41] Acharya UR, Fujita H, Sudarshan VK, Bhat S, Koh JEW. Application of entropies for automated diagnosis of epilepsy using EEG signals: a review. Knowledge-Based Syst 2015;88:85–96. http://dx.doi.org/10.1016/J.KNOSYS.2015.08.004.
  • [42] Tibdewal MN, Dey HR, Mahadevappa M, Ray A, Malokar M. Multiple entropies performance measure for detection and localization of multi-channel epileptic EEG. Biomed Signal Process Control 2017;38:158–67. http://dx.doi.org/10.1016/J.BSPC.2017.05.002.
  • [43] Li P, Karmakar C, Yearwood J, Venkatesh S, Palaniswami M, Liu C. Detection of epileptic seizure based on entropy analysis of short-term EEG. PLoS One 2018;13e0193691. http://dx.doi.org/10.1371/journal.pone.0193691.
  • [44] Raghu S, Sriraam N, Kumar GP, Hegde AS. A novel approach for real-time recognition of epileptic seizures using minimum variance modified fuzzy entropy. IEEE Trans Biomed Eng 2018;65:2612–21. http://dx.doi.org/10.1109/TBME.2018.2810942.
  • [45] Sharmila A, Aman Raj S, Shashank P, Mahalakshmi P. Epileptic seizure detection using DWT-based approximate entropy, Shannon entropy and support vector machine: a case study. J Med Eng Technol 2018;42:1–8. http://dx.doi.org/10.1080/03091902.2017.1394389.
  • [46] Li S, Zhou W, Yuan Q, Geng S, Cai D. Feature extraction and recognition of ictal EEG using EMD and SVM. Comput Biol Med 2013;43:807–16. http://dx.doi.org/10.1016/j.compbiomed.2013.04.002.
  • [47] Sharma R, Pachori RB, Acharya UR. Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals. Entropy 2015;17:669–91. http://dx.doi.org/10.3390/e17020669.
  • [48] Pachori RB, Patidar S. Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Comput Methods Programs Biomed 2014;113:494–502. http://dx.doi.org/10.1016/j.cmpb.2013.11.014.
  • [49] Pachori RB, Bajaj V. Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Comput Methods Programs Biomed 2011;104:373–81. http://dx.doi.org/10.1016/j.cmpb.2011.03.009.
  • [50] Jia J, Goparaju B, Song J, Zhang R, Westover MB. Automated identification of epileptic seizures in EEG signals based on phase space representation and statistical features in the CEEMD domain. Biomed Signal Process Control 2017;38:148–57. http://dx.doi.org/10.1016/J.BSPC.2017.05.015.
  • [51] Zhang T, Chen W, Li M. AR based quadratic feature extraction in the VMD domain for the automated seizure detection of EEG using random forest classifier. Biomed Signal Process Control 2017;31:550–9. http://dx.doi.org/10.1016/J.BSPC.2016.10.001.
  • [52] Emina A, Jasmin K, Abdulhamit S. Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction. Biomed Signal Process Control 2018;39:94–102. http://dx.doi.org/10.1016/J.BSPC.2017.07.022.
  • [53] Kaya Y, Uyar M, Tekin R, Yildirim S. 1D-local binary pattern based feature extraction for classification of epileptic EEG signals. Appl Math Comput 2014;243:209–19. http://dx.doi.org/10.1016/j.amc.2014.05.128.
  • [54] Samiee K, Kovács P, Gabbouj M. Epileptic seizure detection in long-term EEG records using sparse rational decomposition and local Gabor binary patterns feature extraction. Knowledge-Based Syst 2017;118:228–40. http://dx.doi.org/10.1016/J.KNOSYS.2016.11.023.
  • [55] Sairamya NJ, George ST, Ponraj DN, Subathra MSP. Detection of epileptic EEG signal using improved local pattern transformation methods. Circuits Syst Signal Process 2018;37:5554–75. http://dx.doi.org/10.1007/s00034-018-0829-1.
  • [56] Kalbkhani H, Shayesteh MG. Biomedical Signal Processing and Control Stockwell transform for epileptic seizure detection from EEG signals EEG signal calculate Stockwell transform Partition frequency band based on amplitude distribution Dimension reduction by KPCA Classify by. Biomed Signal Process Control 2017;38:108–18. http://dx.doi.org/10.1016/j.bspc.2017.05.008.
  • [57] Zhang T, Chen W, Li M. Generalized Stockwell transform and SVD-based epileptic seizure detection in EEG using random forest. Biocybern Biomed Eng 2018;38:519–34. http://dx.doi.org/10.1016/J.BBE.2018.03.007.
  • [58] Selesnick IW. Wavelet transform with tunable Q-factor. IEEE Trans Signal Process 2011;59:3560–75. http://dx.doi.org/10.1109/TSP.2011.2143711.
  • [59] Patidar S, Panigrahi T. Detection of epileptic seizure using Kraskov entropy applied on tunable-Q wavelet transform of EEG signals. Biomed Signal Process Control 2017;34:74–80. http://dx.doi.org/10.1016/j.bspc.2017.01.001.
  • [60] Bhattacharyya A, Pachori R, Upadhyay A, Acharya U, Bhattacharyya A, Pachori RB, et al. Tunable-q wavelet transform based multiscale entropy measure for automated classification of epileptic EEG signals. Appl Sci 2017;7:385. http://dx.doi.org/10.3390/app7040385.
  • [61] Jindal K, Upadhyay R, Singh HS. Application of tunable-Q wavelet transform based nonlinear features in epileptic seizure detection. Analog Integr Circuits Signal Process 2019;1–16. http://dx.doi.org/10.1007/s10470-019-01424-y.
  • [62] Sharma M, Pachori RB. A novel approach to detect epileptic seizures using a combination of tunable-Q wavelet transform and fractal dimension. J Mech Med Biol 2017;17. http://dx.doi.org/10.1142/S0219519417400036. World Scientific Publishing Co. Pte Ltd.
  • [63] Hassan AR, Siuly S, Zhang Y. Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating. Comput Methods Programs Biomed 2016;137:247–59. http://dx.doi.org/10.1016/j.cmpb.2016.09.008.
  • [64] Taran S, Bajaj V. Motor imagery tasks-based EEG signals classification using tunable-Q wavelet transform. Neural Comput Appl 2018;1–8. http://dx.doi.org/10.1007/s00521-018-3531-0.
  • [65] NJ Sairamya, Selvaraj Thomas George, Ramasamy Balakrishnan, Deivendran Narain Ponraj, MSP Subathra. Classification of EEG signals for detection of epileptic seizure activities based on feature extraction from brain maps using image processing algorithms. IET Image Process 2018;12:2153–62.
  • [66] Hsu KC, Yu SN. Detection of seizures in EEG using subband nonlinear parameters and genetic algorithm. Comput Biol Med 2010;40:823–30. http://dx.doi.org/10.1016/j.compbiomed.2010.08.005.
  • [67] Koçer S, Canal MR. Classifying epilepsy diseases using artificial neural networks and genetic algorithm. J Med Syst 2011;35:489–98. http://dx.doi.org/10.1007/s10916-009-9385-3.
  • [68] Satapathy SK, Dehuri S, Jagadev AK. EEG signal classification using PSO trained RBF neural network for epilepsy identification. Informatics Med Unlocked 2017;6:1–11. http://dx.doi.org/10.1016/j.imu.2016.12.001.
  • [69] Satapathy SK, Dehuri S, Jagadev AK. ABC optimized RBF network for classification of EEG signal for epileptic seizure identification. Egypt Informatics J 2015. http://dx.doi.org/10.1016/j.eij.2016.05.001.
  • [70] Selvaraj TG, Ramasamy B, Jeyaraj SJ, Suviseshamuthu ES. EEG database of seizure disorders for experts and application developers. Clin EEG Neurosci 2014;45:304–9. http://dx.doi.org/10.1177/1550059413500960.
  • [71] Selvan SE, George ST. Range-based ICA using a nonsmooth quasi-newton optimizer for electroencephalographic source localization in focal epilepsy. Neural Comput 2015;27:628–71. http://dx.doi.org/10.1162/NECO.
  • [72] Obeid I, Picone J. The temple university hospital EEG data Corpus. Front Neurosci 2016;10. http://dx.doi.org/10.3389/fnins.2016.00196.
  • [73] Shah V, von Weltin E, Lopez S, McHugh JR, Veloso L, Golmohammadi M, et al. The temple university hospital seizure detection Corpus. Front Neuroinform 2018;12. http://dx.doi.org/10.3389/fninf.2018.00083.
  • [74] Lopez S, Suarez G, Jungreis D, Obeid I, Picone J. Automated identification of abnormal adult EEGs. 2015 IEEE Signal Process Med Biol Symp - Proc Institute of Electrical and Electronics Engineers Inc 2016. http://dx.doi.org/10.1109/SPMB.2015.7405423.
  • [75] Gupta V, Priya T, Yadav AK, Pachori RB, Rajendra Acharya U. Automated detection of focal EEG signals using features extracted from flexible analytic wavelet transform. Pattern Recognit Lett 2017;94:180–8. http://dx.doi.org/10.1016/j.patrec.2017.03.017.
  • [76] Arunkumar N, Ram Kumar K, Venkataraman V. Entropy features for focal EEG and non focal EEG. J Comput Sci 2018;27:440–4. http://dx.doi.org/10.1016/j.jocs.2018.02.002.
  • [77] Orhan U, Hekim M, Ozer M. EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst Appl 2011;38:13475–81. http://dx.doi.org/10.1016/j.eswa.2011.04.149.
  • [78] Djemili R, Bourouba H, Amara Korba MC. Application of empirical mode decomposition and artificial neural network for the classification of normal and epileptic EEG signals. Biocybern Biomed Eng 2016;36:285–91. http://dx.doi.org/10.1016/j.bbe.2015.10.006.
  • [79] Kocadagli O, Langari R. Classification of EEG signals for epileptic seizures using hybrid artificial neural networks based wavelet transforms and fuzzy relations. Expert Sys App 2017;88:419–34.
  • [80] Yavuz E, Kasapbasi MC, Eyüpoglu C, Yazici R. An epileptic seizure detection system based on cepstral analysis and generalized regression neural network. Biocybern Biomed Eng 2018;38:201–16. http://dx.doi.org/10.1016/J.BBE.2018.01.002.
  • [81] Alam SMS, Bhuiyan MIH. Detection of seizure and epilepsy using higher order statistics in the EMD domain. IEEE J Biomed Heal Informatics 2013;17:312–8. http://dx.doi.org/10.1109/JBHI.2012.2237409.
  • [82] Bhati D, Sharma M, Pachori RB, Gadre VM. Time–frequency localized three-band biorthogonal wavelet filter bank using semidefinite relaxation and nonlinear least squares with epileptic seizure EEG signal classification. Digit Signal Process 2017;62:259–73. http://dx.doi.org/10.1016/J.DSP.2016.12.004.
  • [83] Juárez-Guerra E, Alarcon-Aquino V, Gómez-Gil P. Epilepsy seizure detection in EEG signals using wavelet transforms and neural networks. Cham: Springer; 2015. p. 261–9. http://dx.doi.org/10.1007/978-3-319-06764-3_33.
  • [84] Beganovic N, Kevric J, Jokic D. Identification of diagnostic- related features applicable to EEG signal analysis. Proc Annu Conf PHM Soc 2018;10. http://dx.doi.org/10.1234/PHMCONF.2018.V10I1.477.
  • [85] Ocak H. Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm. Signal Processing 2008;88:1858–67. http://dx.doi.org/10.1016/j.sigpro.2008.01.026.
  • [86] Kennedy J, Eberhart R. Particle swarm optimization. Neural Netw 1995;4:1942–8. http://dx.doi.org/10.1109/ICNN.1995.488968. 1995 Proceedings, IEEE Int Conf.
  • [87] Hemanth DJ, Vijila CKS, Anitha J. Performance improved PSO based modified counter propagation neural network for abnormal MR brain image classification. Int J Adv Soft Comput Appl 2010;2:65–84.
  • [88] Xue B, Zhang M, Member S, Browne WN. Particle swarm optimization for feature selection in classification: a multi-objective approach. IEEE Trans Cybern 2013;43:1656–71.
  • [89] Golmohammadi M, Harati Nejad Torbati AH, Lopez de Diego S, Obeid I, Picone J. Automatic analysis of EEGs using big data and hybrid deep learning architectures. Front Hum Neurosci 2019;13. http://dx.doi.org/10.3389/fnhum.2019.00076.
  • [90] R.B. P, S. P. Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Comput Methods Programs Biomed 2014;113:494–502. http://dx.doi.org/10.1016/j.cmpb.2013.11.014.
  • [91] Gubbi J, Member S, Kusmakar S, Member S, Rao AS, Member S, et al. Automatic Detection and Classification of Convulsive Psychogenic Nonepileptic Seizures Using a Wearable Device. IEEE J Biomed Health Info 2016;20:1061–72.
  • [92] Zhang T, Chen W, Li M. Fuzzy distribution entropy and its application in automated seizure detection technique. Biomed Signal Process Control 2018;39:360–77. http://dx.doi.org/10.1016/J.BSPC.2017.08.013.
  • [93] Jaiswal AK, Banka H. Local pattern transformation based feature extraction techniques for classification of epileptic EEG signals. Biomed Signal Process Control 2017;34:81–92. http://dx.doi.org/10.1016/j.bspc.2017.01.005.
  • [94] Sairamya NJ, Premkumar MJ, George ST, Subathra MSP. Performance evaluation of discrete wavelet transform, and wavelet packet decomposition for automated focal and generalized epileptic seizure detection. IETE J Res 2019;1–21. http://dx.doi.org/10.1080/03772063.2019.1568206.
  • [95] Geethu V, Santhoshkumar S. An efficient FPGA realization of seizure detection from EEG signal using wavelet transform and statistical features. IETE J Res 2018;1–11. http://dx.doi.org/10.1080/03772063.2018.1491806.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47489b7f-299b-4f8e-9e1b-03b4f4f300d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.