PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Note of Generalization of Fractional ID-factor-critical Graphs

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
In communication networks, the binding numbers of graphs (or networks) are often used to measure the vulnerability and robustness of graphs (or networks). Furthermore, the frac- tional factors of graphs and the fractional ID-[a, b]-factor-critical covered graphs have a great deal of important applications in the data transmission networks. In this paper, we investigate the rela- tionship between the binding numbers of graphs and the fractional ID-[a, b]-factor-critical covered graphs, and derive a binding number condition for a graph to be fractional ID-[a, b]-factor-critical covered, which is an extension of Zhou’s previous result [S. Zhou, Binding numbers for fractional ID-k-factor-critical graphs, Acta Mathematica Sinica, English Series 30(1)(2014)181–186].
Wydawca
Rocznik
Strony
61--69
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
  • School of Science Jiangsu University of Science and Technology Zhenjiang, Jiangsu 212100, China
Bibliografia
  • [1] Araujo DRB, Martins JF, Bastos CJA. New graph model to design optical networks. IEEE Communications Letters, 2015. 19(12):2130-2133. doi:10.1109/LCOMM.2015.2480716.
  • [2] Ashwin P, Postlethwaite C. On designing heteroclinic networks from graphs. Physica D, 2013. 265:26-39. doi:10.1016/j.physd.2013.09.006.
  • [3] Bauer D, Nevo A, Schmeichel E. Best monotone degree condition for the Hamiltonicity of graphs with a 2-factor. Graphs and Combinatorics, 2017. 33(5):1231-1248. doi:10.1007/s00373-017-1840-1.
  • [4] Fardad M, Lin F, Jovanovic MR. Design of optimal sparse interconnection graphs for synchronization of oscillator networks. IEEE Transactions on Automatic Control, 2014. 59(9):2457-2462. doi:10.1109/TAC. 2014.2301577.
  • [5] Gao W, Guirao J, Wu H. Two tight independent set conditions for fractional (g, f, m)-deleted graphs systems. Qualitative Theory of Dynamical Systems, 2018. 17(1):231-243. doi:10.1007/s12346-016-0222-z.
  • [6] Gao W, Guirao J, Chen Y. A toughness condition for fractional (k, m)-deleted graphs revisited. Acta Mathematica Sinica, English Series, 2019. 35(7):1227-1237. doi:10.1007/s10114-019-8169-z.
  • [7] Gao W, Wang W, Dimitrov D. Toughness condition for a graph to be all fractional (g, f, n)-critical deleted. Filomat, 2019. 33(9):2735-2746. doi:10.2298/FIL1909735G.
  • [8] Haghparast N, Kiani D. Edge-connectivity and edges of even factors of graphs. Discussiones Mathematicae Graph Theory, 2019. 39(2):357-364. doi:10.7151/dmgt.2082.
  • [9] Hasanvand M. Factors and connected factors in tough graphs with high isolated toughness. Dec. 30. arXiv: 1812.11640, 2018. doi:10.48550/arXiv.1812.11640.
  • [10] Jiang J. A sufficient condition for all fractional [a, b]-factors in graphs. Proceedings of the Romanian Academy, Series A, 2018. 19(2):315-319.
  • [11] Lanzeni S, Messina E, Archetti F. Graph models and mathematical programming in biochemical network analysis and metabolic engineering design. Computers and Mathematics with Applications, 2008. 55(5):970-983. doi:10.1016/j.camwa.2006.12.101.
  • [12] Li Z, Yan G, Zhang X. On fractional (g, f )-covered graphs. OR Transactions (China), 2002. 6(4):65-68.
  • [13] Pishvaee MS, Rabbani M. A graph theoretic-based heuristic algorithm for responsive supply chain network design with direct and indirect shipment. Advances in Engineering Software, 2011. 42(3):57-63. doi:10.1016/j.advengsoft.2010.11.001.
  • [14] Rahimi M, Haghighi A. A graph portioning approach for hydraulic analysis-design of looped pipe networks. Water Resources Management, 2015. 29(14):5339-5352. doi:10.1007/s11269-015-1121-9.
  • [15] Sun Z, Zhou S. A generalization of orthogonal factorizations in digraphs. Information Processing Letters, 2018. 132:49-54. doi:10.1016/j.ipl.2017.12.003.
  • [16] Woodall DR. The binding number of a graph and its Anderson number. Journal of Combinatorial Theory, Series B, 1973. 15(3):225-255. doi:10.1016/0095-8956(73)90038-5.
  • [17] Wang S, Zhang W. Isolated toughness for path factors in networks. RAIRO-Operations Research, 2022. 56(4):2613-2619. doi:10.1051/ro/2022123.
  • [18] Wang S, Zhang W. On k-orthogonal factorizations in networks. RAIRO-Operations Research, 2021. 55(2):969-977. doi:10.1051/ro/2021037.
  • [19] Wang S, Zhang W. Research on fractional critical covered graphs. Problems of Information Transmission, 2020. 56(3):270-277. doi:10.1134/S0032946020030047.
  • [20] Zhou S. A neighborhood union condition for fractional (a, b, k)-critical covered graphs. Discrete Applied Mathematics, 2021. doi:10.1016/j.dam.2021.05.022.
  • [21] Zhou S. A result on fractional (a, b, k)-critical covered graphs. Acta Mathematicae Applicatae Sinica-English Series, 2021. 37(4):657-664. doi:10.1007/s10255-021-1034-8.
  • [22] Zhou S. Binding numbers for fractional ID-k-factor-critical graphs. Acta Mathematica Sinica, English Series, 2014. 30(1):181-186. doi:10.1007/s10114-013-1396-9.
  • [23] Zhou S. Remarks on restricted fractional (g, f )-factors in graphs. Discrete Applied Mathematics, 2022. doi:10.1016/j.dam.2022.07.020.
  • [24] Zhou S, Bian Q. The existence of path-factor uniform graphs with large connectivity. RAIRO-Operations Research, 2022. doi:10.1051/ro/2022143.
  • [25] Zhou S, Bian Q, Pan Q. Path factors in subgraphs. Discrete Applied Mathematics, 2022. 319:183-191. doi:10.1016/j.dam.2021.04.012.
  • [26] Zhou S, Liu H. Discussions on orthogonal factorizations in digraphs. Acta Mathematicae Applicatae Sinica-English Series, 2022. 38(2):417-425. doi:10.1007/s10255-022-1086-4.
  • [27] Zhou S, Liu H, Xu Y. A note on fractional ID-[a, b]-factor-critical covered graphs. Discrete Applied Mathematics, 2022. 319:511-516. doi:10.1016/j.dam.2021.03.004.
  • [28] Zhou S, Sun Z, Bian Q. Isolated toughness and path-factor uniform graphs (II). Indian Journal of Pure and Applied Mathematics, 2022. doi:10.1007/s13226-022-00286-x.
  • [29] Zhou S, Wu J, Bian Q. On path-factor critical deleted (or covered) graphs. Aequationes Mathematicae, 2022. 96(4):795-802. doi:10.1007/s00010-021-00852-4.
  • [30] Zhou S, Wu J, Liu H. Independence number and connectivity for fractional (a, b, k)-critical covered graphs. RAIRO-Operations Research, 2022. 56(4):2535-2542. doi:10.1051/ro/2022119.
  • [31] Zhou S, Wu J, Xu Y. Toughness, isolated toughness and path factors in graphs. Bulletin of the Australian Mathematical Society, 2021. doi:10.1017/S0004972721000952.
Identyfikator YADDA
bwmeta1.element.baztech-474898e7-4746-47df-8604-0cea5222da7f