PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Pathogen-resistant biodegradable SMS materials: a solution for medical applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The study aims to develop and assess a biodegradable spun-bond-melt-blown-spun-bond (SMS) structure composed of polylactic acid (PLA) for medical applications. The innovation addresses the environmental impacts of petroleum-based disposable materials by proposing a sustainable, pathogen-resistant alternative with effective filtration capabilities. Design/methodology/approach: The PLA-based SMS structure was fabricated with spun-bonded and melt-blown technologies, incorporating triethyl citrate (TEC) as a plasticiser to enhance the melt-flow rate and facilitate the production of fine fibre filtration. Thermal, mechanical, molecular, and biodegradability properties were evaluated through standard laboratory tests, including GPC/SEC analysis, SEM imaging, FTIR spectroscopy, and composting experiments. Findings: The developed SMS structure exhibited excellent filtration efficiency (98.5% for 0.3 μm particles) and biodegradation potential, achieving an 84.3% mass reduction after 24 weeks in a composting environment. The material’s spun-bonded layers provided mechanical durability, while the melt-blown layer ensured superior filtration properties. The results demonstrate the structure’s suitability for medical protective equipment while reducing environmental harm. Research limitations/implications: While the study highlights the potential of PLA-based SMS materials, further work should focus on developing industrial-scale production, long-term biodegradability under different environmental conditions and cost-effectiveness compared to commercially available products. Practical implications: Adopting PLA-based SMS materials in protective medical textiles could significantly lower plastic waste and greenhouse gas emissions associated with single-use polypropylene products. The biodegradable solution aligns with global sustainability goals and addresses the demand for disposable protective gear. Originality/value: The study presents a new biodegradable material for medical textiles that combines high performance with environmental responsibility. It brings a possible development path for researchers and identifies solutions for manufacturers and customers looking to create more sustainable healthcare solutions.
Rocznik
Strony
60--75
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
  • Łukasiewicz – Lodz Institute of Technology, ul. Marii Skłodowskiej-Curie 19/27, 90-570 Łódź, Poland
  • Łukasiewicz – Lodz Institute of Technology, ul. Marii Skłodowskiej-Curie 19/27, 90-570 Łódź, Poland
  • Lodz University of Technology, ul. Stefana Żeromskiego 116, 90-924 Łódź, Poland
  • Łukasiewicz – Lodz Institute of Technology, ul. Marii Skłodowskiej-Curie 19/27, 90-570 Łódź, Poland
  • Łukasiewicz – Lodz Institute of Technology, ul. Marii Skłodowskiej-Curie 19/27, 90-570 Łódź, Poland
  • Lodz University of Technology, ul. Stefana Żeromskiego 116, 90-924 Łódź, Poland
autor
  • Łukasiewicz – Lodz Institute of Technology, ul. Marii Skłodowskiej-Curie 19/27, 90-570 Łódź, Poland
autor
  • Łukasiewicz – Lodz Institute of Technology, ul. Marii Skłodowskiej-Curie 19/27, 90-570 Łódź, Poland
  • Łukasiewicz – Lodz Institute of Technology, ul. Marii Skłodowskiej-Curie 19/27, 90-570 Łódź, Poland
  • Lodz University of Technology, ul. Stefana Żeromskiego 116, 90-924 Łódź, Poland
Bibliografia
  • [1] K. Nirmala, G. Rangasamy, M. Ramya, V.U. Shankar, G. Rajesh, A critical review on recent research progress on microplastic pollutants in drinking water, Environmental Research 222 (2023) 115312. DOI: https://doi.org/10.1016/J.ENVRES.2023.115312
  • [2] F. Citterich, A. Lo Giudice, M. Azzaro, A plastic world: A review of microplastic pollution in the freshwaters of the Earth’s poles, Science of The Total Environment 869 (2023) 161847. DOI: https://doi.org/10.1016/j.scitotenv.2023.161847
  • [3] M. Bao, X. Xiang, J. Huang, L. Kong, J. Wu, S. Cheng, Microplastics in the Atmosphere and Water Bodies of Coastal Agglomerations: A Mini-Review, International Journal of Environmental Research and Public Health 20/3 (2023) 2466. DOI: https://doi.org/10.3390/ijerph20032466
  • [4] H. Du, Y. Xie, J. Wang, Microplastic degradation methods and corresponding degradation mechanism: Research status and future perspectives, Journal of Hazardous Materials 418 (2021) 126377. DOI: https://doi.org/10.1016/j.jhazmat.2021.126377
  • [5] K. Zhang, A.H. Hamidian, A. Tubić, Y. Zhang, J.K.H. Fang, C. Wu, P.K.S. Lam, Understanding plastic degradation and microplastic formation in the environment: A review, Environmental Pollution 274 (2021) 116554. DOI: https://doi.org/10.1016/j.envpol.2021.116554
  • [6] Z. Lin, T. Jin, T. Zou, L. Xu, B. Xi, D. Xu, J. He, L. Xiong, C. Tang, J. Peng, Y. Zhou, J. Fei, Current progress on plastic/microplastic degradation: Fact influences and mechanism, Environmental Pollution 304 (2022) 119159. DOI: https://doi.org/10.1016/j.envpol.2022.119159
  • [7] M.N. Rahman, S.H. Shozib, M.Y. Akter, A.R.M.T. Islam, M.S. Islam, M.S. Sohel, C. Kamaraj, M.R.J. Rakib, A.M. Idris, A. Sarker, G. Malafaia, Microplastic as an invisible threat to the coral reefs: Sources, toxicity mechanisms, policy intervention, and the way forward, Journal of Hazardous Materials 454 (2023) 131522. DOI: https://doi.org/10.1016/j.jhazmat.2023.131522
  • [8] C. Galindo, P. Jacques, A. Kalt, Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O 2, UV/TiO 2 and VIS/TiO2: Comparative mechanistic and kinetic investigations, Journal of Photochemistry and Photobiology A: Chemistry 130/1 (2000) 35-47. DOI: https://doi.org/10.1016/s1010-6030(99)00199-9
  • [9] B. Henry, K. Laitala, I.G. Klepp, Microfibres from apparel and home textiles: Prospects for including microplastics in environmental sustainability assessment, Science of The Total Environment 652 (2019) 483-494. DOI: https://doi.org/10.1016/j.scitotenv.2018.10.166
  • [10] J. Baranwal, B. Barse, A. Fais, G.L. Delogu, A. Kumar, Biopolymer: A Sustainable Material for Food and Medical Applications, Polymers 14/5 (2022) 983. DOI: https://doi.org/10.3390/polym14050983
  • [11] X. Qi, Y. Ren, X. Wang, New advances in the biodegradation of Poly(lactic) acid, International Biodeterioration and Biodegradation 117 (2017) 215-223. DOI: https://doi.org/10.1016/j.ibiod.2017.01.010
  • [12] E. Olewnik-Kruszkowska, A. Burkowska-But, I. Tarach, M. Walczak, E. Jakubowska, Biodegradation of polylactide-based composites with an addition of a compatibilizing agent in different environments, International Biodeterioration and Biodegradation 147 (2020) 104840. DOI: https://doi.org/10.1016/j.ibiod.2019.104840
  • [13] R. Pradhan, M. Misra, L. Erickson, A. Mohanty, Compostability and biodegradation study of PLA–wheat straw and PLA–soy straw based green composites in simulated composting bioreactor, Bioresource Technology 101/21 (2010) 8489-8491. DOI: https://doi.org/10.1016/j.biortech.2010.06.053
  • [14] N.K. Kalita, S.M. Bhasney, C. Mudenur, A. Kalamdhad, V. Katiyar, End-of-life evaluation and biodegradation of Poly(lactic acid) (PLA)/Polycaprolactone (PCL)/Microcrystalline cellulose (MCC) polyblends under composting conditions, Chemosphere 247 (2020) 125875. DOI: https://doi.org/10.1016/j.chemosphere.2020.125875
  • [15] G. Kale, R. Auras, S.P. Singh, Comparison of the degradability of poly(lactide) packages in composting and ambient exposure conditions, Packaging Technology and Science, An International Journal 20/1 (2007) 49-70. DOI: https://doi.org/10.1002/pts.742
  • [16] N.K. Kalita, N.A. Damare, D. Hazarika, P. Bhagabati, A. Kalamdhad, V. Katiyar, Biodegradation and characterisation study of compostable PLA bioplastic containing algae biomass as potential degradation accelerator, Environmental Challenges 3 (2021) 100067. DOI: https://doi.org/10.1016/j.envc.2021.100067
  • [17] E. Castro-Aguirre, F. Iñiguez-Franco, H. Samsudin, X. Fang, R. Auras, Poly(lactic acid)—Mass production, processing, industrial applications, and end of life, Advanced Drug Delivery Reviews 107 (2016) 333-366. DOI: https://doi.org/10.1016/j.addr.2016.03.010
  • [18] J. Muller, C. González-Martínez, A. Chiralt, Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging, Materials 10/8 (2017) 952. DOI: https://doi.org/10.3390/ma10080952
  • [19] S. Roy, J.W. Rhim, Preparation of bioactive functional poly(lactic acid)/curcumin composite film for food packaging application, International Journal of Biological Macromolecules 162 (2020) 1780-1789. DOI: https://doi.org/10.1016/j.ijbiomac.2020.08.094
  • [20] A.J.R. Lasprilla, G.A.R. Martinez, B.H. Lunelli, A.L. Jardini, R.M. Filho, Poly-lactic acid synthesis for application in biomedical devices — A review, Biotechnology Advances 30/1 (2012) 321-328. DOI: https://doi.org/10.1016/j.biotechadv.2011.06.019
  • [21] R.P. Pawar, S.U. Tekale, S.U. Shisodia, J.T. Totre, A.J. Domb, Biomedical applications of poly(lactic acid), Recent Patents on Regenerative Medicine 4/1 (2014) 40-51. DOI: https://doi.org/10.2174/2210296504666140402235024
  • [22] T. Grethe, Biodegradable synthetic polymers in textiles – what lies beyond PLA and medical applications? A review, Tekstilec 64/1 (2021) 32-46. DOI: https://doi.org/10.14502/Tekstilec2021.64.32-46
  • [23] J.S. Dugan, Novel Properties of PLA Fibers, International Nonwovens Journal 10/3 (2001) 29-33.
  • [24] M.Z. Rahman, M.E. Hoque, M.R. Alam, M.A. Rouf, S.I. Khan, H. Xu, S. Ramakrishna, Face Masks to Combat Coronavirus (COVID-19) - Processing, Roles, Requirements, Efficacy, Risk and Sustainability, Polymers 14/7 (2022) 1296. DOI: https://doi.org/10.3390/polym14071296
  • [25] S. Ghosh, Composite nonwovens in medical applications, in: D. Das, B. Pourdeyhimi, (eds), Composite Non-Woven Materials: Structure, Properties and Applications, Woodhead Publishing, Sawston, Cambridge, 2014, 211-224. DOI: https://doi.org/10.1533/9780857097750.211
  • [26] Y. Zhang, W. Ma, M. Lin, H. Qi, C. Zhang, Preparation of PLA-based SMS nonwoven composites and its applications in protective apparel, The Journal of The Textile Institute 115/7 (2024) 1021-1029. DOI: https://doi.org/10.1080/00405000.2023.2206340
  • [27] Y. Liu, J. Jin, T. Ma, B. Peng, X. Wang, M. Yan, Promoting the La solution in 2:14:1-type compound: Resultant chemical deviation and microstructural nanoheterogeneity, Journal of Materials Science and Technology 62 (2021) 195-202. DOI: https://doi.org/10.1016/j.jmst.2020.06.009
  • [28] J.S. Yang, Y.J. Xie, W. He, Research progress on chemical modification of alginate: A review, Carbohydrate Polymers 84/1 (2011) 33-39. DOI: https://doi.org/10.1016/j.carbpol.2010.11.048
  • [29] D. Venkataraman, E. Shabani, J.H. Park, Advancement of Nonwoven Fabrics in Personal Protective Equipment, Materials 16/11 (2023) 3964. DOI: https://doi.org/10.3390/ma16113964
  • [30] A. Quintana-Gallardo, R. del Rey, S. González-Conca, I. Guillén-Guillamón, The Environmental Impacts of Disposable Nonwoven Fabrics during the COVID-19 Pandemic: Case Study on the Francesc de Borja Hospital, Polymers 15/5 (2023) 1130. DOI: https://doi.org/10.3390/polym15051130
  • [31] E. Vozzola, M. Overcash, E. Griffing, Environmental considerations in the selection of isolation gowns: A life cycle assessment of reusable and disposable alternatives, American Journal of Infection Control 46/8 (2018) 881-886. DOI: https://doi.org/10.1016/j.ajic.2018.02.002
  • [32] InvestigateWest, Rich countries are illegally exporting plastic trash to poor countries, data suggests, Available from: https://www.invw.org/2022/04/18/rich-countries-are-illegally-exporting-plastic-trash-to-poor-countries-data-suggests/ (access in: 25.10.2023)
  • [33] European Environment Agency, EU exporting more waste, including hazardous waste. Available from: https://www.eea.europa.eu/highlights/eu-exporting-more-waste-including (access in: 25.10.2023)
  • [34] M.H. Masud, M. Mourshed, M.S. Hossain, N.U. Ahmed, P. Dabnichki, Generation of waste: problem to possible solution in developing and underdeveloped nations, in: P. Singh, P. Verma, R. Singh, A. Ahamad, A.C.S. Batalhão (eds), Waste Management and Resource Recycling in the Developing World, Elsevier, Amsterdam, 2023, 21-59. DOI: https://doi.org/10.1016/B978-0-323-90463-6.00021-X
  • [35] M.G. Kibria, N.I. Masuk, R. Safayet, H.Q. Nguyen, M. Mourshed, Plastic Waste: Challenges and Opportunities to Mitigate Pollution and Effective Management, International Journal of Environmental Research 17 (2023) 20. DOI: https://doi.org/10.1007/S41742-023-00507-Z
  • [36] K. Gzyra-Jagieła, K. Sulak, Z. Draczyński, S. Podzimek, S. Gałecki, S. Jagodzińska, D. Borkowski, Modification of Poly(lactic acid) by the Plasticization for Application in the Packaging Industry, Polymers 13/21 (2021) 3651. DOI: https://doi.org/10.3390/polym13213651
  • [37] K. Gzyra-Jagieła, K. Sulak, Z. Draczyński, L.M. Kiełbik, S. Jagodzińska, D. Borkowski, Influence of the Structure of Low MolecularWeight Esters on Poly(lactic acid) in the Plasticization Process - part 1, Fibres and Textiles in Eastern Europe 30/3(151) (2022) 93-101. DOI: https://doi.org/10.2478/ftee-2022-0027
  • [38] A. Marcilla, M. Beltran, Mechanisms of plasticisers action, in: G. Wypych (ed), Handbook of Plasticizers, 2nd Edition, ChemTec Publishing, Toronto, 2012, 119-133. DOI: https://doi.org/10.1016/B978-1-895198-50-8.50007-2
  • [39] D.F. Cadogan, C.J. Howick, Plasticizers, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley, Hoboken, New Jersey, 2000. DOI: https://doi.org/10.1002/14356007.A20_439
  • [40] Poly Lactic Acid (PLA) Market by Grade (Thermoforming, Extrusion, Injection Molding, Blow Molding), Application (Rigid Thermoform), End-use Industry (Packaging, Consumer Goods, Agricultural, Textile, Biomedical) & Region - Global Forecast to 2028. Available from: https://www.marketsandmarkets.com/Market-Reports/polylactic-acid-pla-market-29418964.html?gclid=CjwKCAjw-eKpBhAbEiwAqFL0mnwqKp87kC-Vw-awpvWreO2xu-tG2e5hFgsrDFUgKJT6W21cxAjAoRoCvkQQAvD_BwE (access in: 25.10.2023)
  • [41] M. Kurata, Y. Tsunashima, Viscosity – Molecular Weight Relationships and Unperturbed Dimensions of Linear Chain Molecules, in: The Wiley Database of Polymer Properties, Wiley, Hoboken, New Jersey, 1999. DOI: https://doi.org/10.1002/0471532053.bra049
  • [42] J.R. Dorgan, J. Janzen, D.M. Knauss, S.B. Hait, B.R. Limoges, M.H. Hutchinson, Fundamental solution and single-chain properties of polylactides, Journal of Polymer Science. Part B: Polymer Physics 43/21 (2005) 3100-3111. DOI: https://doi.org/10.1002/polb.20577
  • [43] X.Y.D. Soo, S. Wang, C.C.J. Yeo, J. Li, X.P. Ni, L. Jiang, K. Xue, Z. Li, X. Fei, Q. Zhu, X.J. Loh, Polylactic acid face masks: Are these the sustainable solutions in times of COVID-19 pandemic?, Science of The Total Environment 807/3 (2022) 151084. DOI: https://doi.org/10.1016/j.scitotenv.2021.151084
  • [44] A. Gutowska, J. Jóźwicka, S. Sobczak, W. Tomaszewski, K. Sulak, P. Miros, M. Owczarek, M. Szalczyńska, D. Ciechańska, I. Krucińska, In-compost biodegradation of PLA nonwovens, Fibres and Textiles in Eastern Europe 22/5(107) (2014) 99-106.
  • [45] P. Miros-Kudra, K. Gzyra-Jagieła, M. Kudra, Physicochemical assessment of the biodegradability of agricultural nonwovens made of PLA, Fibres and Textiles in Eastern Europe 29/1(145) (2021) 26-34. DOI: https://doi.org/10.5604/01.3001.0014.2398
  • [46] A. Larrañaga, A.-A. Guay-Bégin, P. Chevallier, G. Sabbatier, J. Fernández, G. Laroche, J.-R. Sarasua, Grafting of a model protein on lactide and caprolactone based biodegradable films for biomedical applications, Biomatter 4/1 (2014) e27979. DOI: https://doi.org/10.4161/biom.27979
  • [47] A. Larrañaga, J.R. Sarasua, Effect of bioactive glass particles on the thermal degradation behaviour of medical polyesters, Polymer Degradation and Stability 98/3 (2013) 751-758. DOI: https://doi.org/10.1016/j.polymdegradstab.2012.12.015
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47411042-0e66-442e-b090-8a607562561f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.