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Abstract: Effects of spatial fluctuations of soil parameters 
are considered in a new context – considering variability 
of soil parameters in conjunction with non-uniform stress 
fields, which can locally amplify (or suppress) subsoil 
inhomogeneities. In this way, several design situations 
for the Coulomb frictional material with random tan(j(x)) 
reveal a reduction of variance, which is less significant 
than for the standard volume averaging. When looking for 
an ‘effective’ random variable [tan(j)]a – that is, a random 
variable, which is equivalent to the random field tan(j(x)) 
– the Vanmarcke averaging by simple volume integrals 
is insufficient; it systematically overestimates effects 
of variance reduction, thus causing potentially unsafe 
situations. The new proposed approach is coherent, 
formally defined and more realistic.

Keywords: spatial variability; effective soil parameters; 
variance reduction; the Vanmarcke averaging; safety 
factor.

1  Introduction
Reliability-based design methods have recently been 
widely applied to geoengineering, in which the spatial 
variability of soil parameters (random fields) plays an 
important role. Early studies from the late 60s focused on 
random stability of slopes. The first models considered soil 
strength parameters as spatial random fields; however, 
simple random variables are more useful in practical 
applications (EN 1997-1; Low and Phoon 2015, Tietje et 
al. 2011). Recent risk analyses widely implement random 
data as spatial random fields of auto- and crosscorrelated 
parameters or even use complete probabilistic definition 

with joint probability distributions (Ching et al. 2016, 
Javankhoshdel and Bathurst 2015, Griffith and Fenton 
2001, Jiang et al. 2015, Shen et al. 2021). Data acquisition 
and operations on such spatial data require sophisticated 
numerical support, but – alternatively – some techniques 
of data pre-processed simplifications are also effective; 
the former direction can be found in some selected papers 
attached as references (Cho 2007, Deng et al. 2017, Farah 
et al. 2015, Ji et al. 2018, Jiang et al. 2014, Kim and Sitar 
2013, Li et al. 2017, Liu et al. 2017, Liu et al. 2018, Shen 2021, 
Tietje et al. 2011), while the latter direction is presented 
hereafter.

Another group of boundary problems analyses 
random bearing capacity of footings in a random field 
context focusing on the most important regions, where 
shear resistance is generated along slip lines or slip 
surfaces. The undrained conditions are often analysed 
(frictionless materials, the Tresca model), which do not 
depend on stresses (Chwała 2019, Griffith and Fenton 
2001, Huang et al. 2013, Li et al. 2015, Puła and Chwała 
2015, Shen et al. 2021). For frictional or frictional-cohesive 
materials, the situation is more complex because stress 
fields cannot be ignored (Fenton and Griffith 2003, Liu et 
al. 2017).

Modelling of input data as spatial random fields 
complicates risk analyses; therefore, advanced analytical 
or numerical methods are widely in use. The fundamental 
difficulty is that such sophisticated models, often 
parameter sensitive, should be in a balance with high 
quality of geoengineering input data and the data look 
never complete; that is why, for practical design situations, 
the random models are sometimes reduced from spatial 
random fields to simple random variables (Vanmarcke 
2010, Low and Phoon 2015) by making use of some 
averaging techniques. Note that the spatial averaging 
does not necessarily mean that any significant part of 
information is lost. In a context of interactions between 
adjacent regions in a subsoil mass, significant up and 
down fluctuations of random parameters can reduce each 
other; so, the volume averaging of spatially distributed 
soil parameters is rationally justified and economical - it 
reduces point variances of considered random fields (Tietje 
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et al. 2011). In addition, the method of spatial averaging 
has a strong mathematical background (Vanmarcke 2010) 
as well as a variety of well-documented applications. 

The paper focuses mainly on the subsoil shearing 
resistance - like t = qn×tan(j) for the frictional Coulomb 
material - and analyses the variance reduction coefficients 
ga for the homogeneous random field tan(j(x)), which is 
reduced by averaging to a corresponding random variable 
[tan(j)]a. Fields of stresses in the subsoil mass implement 
a new element to the averaging procedures because non-
uniform (deterministic) normal stresses qn ¹ const(x) 
generate a kind of subsoil inhomogeneities, in terms of 
the random shearing resistance t(x). Indeed, if a normal 
stress qn along a slip line is locally negligible, then t = 
qn×tan(j) is also locally negligible and such a region does 
not contribute to total bearing capacity. If locally qn ~ 0 
in shearing resistance, then the friction coefficient tan(j) 
is locally not very important and especially its random 
fluctuations Dtan(j) can be ignored; also, it is vice versa 
for a locally concentrated load qn >> 0. Vanmarcke’s spatial 
averaging applied to soil strength parameters (or to soil 
deformation parameters) ignores this mechanism and 
this is controversial. Clearly, the Vanmarcke averaging of 
spatial random fields is effective for many ‘stress-neutral’ 
random parameters like radioactive radiation, pollutant 
concentration, temperature, etc. For example, the spatial 
geometrical averaging is very useful in hydrological 
studies – hydrologists evaluate average rainfalls over a 
certain geographical region to estimate flood danger in 
an entire river basin (Vanmarcke 2010); but this model is 
insufficient for ultimate limit states, which are based on 
a random field tan(j(x)) because the Coulomb shearing 
resistance t is additionally ‘disturbed’ by spatially 
distributed normal loads qn(x). 

It is assumed that the spatial field of the normal 
stress qn (x) is deterministic and physically independent 
of the random field tan(j(x)). The stress field qn(x) plays 
the role of a fourth source of inhomogeneity – apart 
from the inherent one, from deterministic trends and 
measurement/transformation errors – because the 
stress field qn(x) can amplify (or suppress) effects of 
random local fluctuations. A new point of view on the 
spatial averaging of random fields in geoengineering 
is presented below, and the paper’s objectives focus 
on simple numerical examples. The paper implements 
a more general and coherent concept of averaging of 
random fields and allows a conclusion that the standard 
(purely geometrical) variance reduction based only on 
volume integrals can be too optimistic; in a context of 
geotechnical structural safety, the traditional volume 
averaging can be dangerous. 

Only few papers consider in a distinct way volume 
averaging in conjunction with fields of stresses, though 
there is a widespread agreement that the spatial regions 
being close to loaded places play a pivotal role in the 
averaging; being ‘close to loaded places’ means not only 
a short distance, but also local stress components of a 
maximal intensity. Recently, it was found by Ching and 
Hu (2017) and Ching et al. (2016) that the traditional 
spatial averaging model that treats all soil regions equally 
important cannot satisfactorily represent the effective 
Young modulus for the footing settlement problem 
- highly mobilised soil regions close to a footing are 
more significant than non-mobilised ones; the authors 
proposed some weight coefficients derived from a random 
finite element analysis. Similarly, for random shearing 
resistance of a rectangular sample analysed via finite 
elements (Ching and Phoon 2013), the authors found 
that the averaging over the whole sample overestimates 
the variance reduction, whereas the averaging along slip 
lines is much more representative; such a conclusion for 
localised shearing resistance should not be surprising. In 
the next paper, the authors confirmed this conclusion for 
a wider class of boundary problems (Ching et al. 2016). 

2  Soil parameters as random 
variables
Soils display inherent inhomogeneities caused by long-
term geological processes, unknown stress history, 
soil moisture, chemical reactions, etc.; therefore, soil 
parameters have a random nature, which can be described 
in terms of random variables or spatial random fields (time 
effects are not considered hereafter). Such local random 
fluctuations that happen in situ can be amplified during 
soil parameter evaluation, that is, by soil testing (usually 
invasive), measurement errors, calibration procedures, 
transformation models and others (Phoon and Kulhawy 
1999a, 1999b); therefore, in geotechnical risk assessment, 
the term uncertainty of geotechnical parameters is 
more adequate than the term inherent inhomogeneity. 
Reported fluctuations of geotechnical parameters are 
relatively great, much greater than in cases of man-made 
construction materials. Considering a subsoil layer as 
a macro-homogeneous mass, the uncertainty can be 
expressed using coefficients of variations (c.o.v.) called n 
= s/m, so a standard deviation s over an expected value 
m > 0. This distribution-free parameter is the minimal 
information about subsoil uncertainty; it can be sufficient 
only in simple practical applications.
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Numerous authors present the results, literature 
reviews and discussions on ‘typical’ values of c.o.v. (%), 
like the values reviewed by Phoon and Kulhawy (1999a). 
Clearly, the data from many countries, regions, geological 
units, climate zones and even from different geological 
companies differ substantially and may be incomparable. 
This explains inevitable discrepancies in published 
data. Reported c.o.v. are sometimes based on estimated 
inherent inhomogeneity, but sometimes they are based 
on a total uncertainty that includes measurement errors, 
etc. Moreover, algorithms of de-trending can be different, 
non-standard testing procedures and individual data 
transformation methods are sometimes implemented 
(Phoon and Kulhawy 1999a). For an illustrative character 
of this paragraph, generalised ‘most typical’ values can be 
derived based on the review papers by Phoon and Kulhawy 
(1999a, 1999b): for the internal friction coefficient ntan(j) ~ 
5%-15% (non-cohesive soils), ntan(j) ~ 25% (cohesive soils, 
even up to 50% is possible; slightly less for the angle j 
itself), for the cohesion nc ~ 20%-30% (for undrained 
shear strength, even up to 70% is possible) and for the 
deformation modulus nD ~ 30%-50%. The presented 
values refer to the mean values of inherent variability; the 
intervals for global uncertainty can be still wider, at least 
10%-20% due to measurement errors.

The following negative crosscorrelation coefficient is 
usually reported: -0.75 < rtan(j);c < 0 and the value rtan(j);c ~ 
-0.3 can be recommended as a conservative estimation. 
Note that deterministic physical arguments do not always 
confirm the assumed negative crosscorrelation between j 
or tan(j) and c. Indeed, local fluctuations of soil moisture 
cause simultaneous decrease (or increase) of both tan(j) 
and c; this fact can support suggestion about a positive 
correlation. On the other hand, local fluctuations of fine 
particle content result in random changes of tan(j), which 
are simultaneously opposite to changes of c; this fact can 
support the conclusion about a negative correlation. Tests 
on drained and undrained samples also suggest a negative 
correlation (cu > c¢, ju ~ 0o < j¢). A review of previous papers 
and study on the role of negative crosscorrelation can be 
found in Javankhoshdel and Bathurst (2015).

Reliability-based design methods that use only the 
random variable format can cause an overdesign of 
foundations or other geoengineering structures. There 
are several possible reasons for this: ultimate limit state 
conditions may be oversimplified (too restrictive), some 
improvements of soil parameters may happen during 
construction, the database about geotechnical failures 
may be still poor – or the values of the c.o.v. may be ‘too 
large’, even though they are correct as point estimations. 
Indeed, it is a well-established fact that point variances 

Var{P(x)} = s2 = const(x) of a homogeneous random field 
of soil parameters P(x) are usually not representative 
(overestimated) in geotechnical safety analyses because 
they ignore the interactions between adjacent regions in 
the considered soil mass. Bearing in mind dimensions of 
such adjacent regions – expressed in metres or dozens 
of metres – local random fluctuations can compensate 
each other in a considered soil mass as a whole, if total 
(summarised) effects are of interest. Formally, these are 
autocorrelation and crosscorrelation functions (between 
different parameters), which cause such reduction 
effects. This observation is a pivot of the monographies by 
Vanmarcke (2010, 1983) and numerous next papers. 

Simple reliability models based on random variables 
that use only the expected values m and standard deviations 
s - instead of spatial random fields of subsoil parameters 
- are the most popular tool in safety evaluation, including 
the Eurocodes (EN 1997-1). In this context, a special 
attention is paid to averaging techniques called as spatial 
random homogenisation or volume integrals, which can 
transform spatially fluctuating random fields to some 
equivalent random variables. Since for a homogeneous 
random field, the expected value E{P(x)} = m = const, 
any spatial averaging will not change this value, but the 
averaging yields an ‘effective’ variance Vara = ga×s

2 with 
a reduction coefficient ga £ 1; equivalently, but in terms of 
standard deviations sa = Ga×s, therefore, the symbol Ga = 
Öga is also in use (Vanmarcke 2010, Tietje et al. 2011). 

3  Soil parameters as random fields
Consider a homogeneous random field of a soil parameter 
(or several soil parameters in a vectorial version) denoted 
as P(x), where a point x = (x1, …, xn) belongs to a domain 
D Ì En in n-dimensional Euclidean space. The assumed 
homogeneity means that for every two points x, y, the 
expected values and the variances of two random variables 
P(x), P(y) are the same, E{P(x)} = E{P(y)} = m = const, 
Var{P(x)} = Var{P(y)} = s2 = const < + ¥; the covariance 
function equals Cov{P(x);P(y)} = E{[P(x) - m]×[P(y) - m]} = 
s2×r(x - y), so the corresponding correlation coefficient 
r depends only on the difference Dx = x - y or simply  
r = r(Dx). Note that the approach is also effective for some 
quasi-homogeneous random fields when homogeneous 
random fluctuations happen around a functional 
deterministic trend m + f(x), like for a subsoil stiffness and 
strength which often increase with depth (Li et al. 2015). 
In principle, the homogeneity requirement concerns the 
homogeneous random fluctuations and not so much 
deterministic trends; so, during the pre-processing, the 
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model should be de-trended (Bagińska et al. 2016, Li et al. 
2015). Another technique is used by Shen et al. (2021); the 
authors recommend a modulating amplitude A(x), which 
is a deterministic function, but modifies the considered 
random field of subsoil parameters P(x) = A(x)×H(x). The 
randomness is still generated by a homogeneous random 
field H(x). In particular, subsoil resistance derived from 
vertical cone penetration tests (CPT) can have the form of a 
stochastic process qc(z) with increasing both the expected 
value and the standard deviation (proportionally), but the 
model is not more complicated.

Joint probability distributions of the random field 
P(x) are not specified, if the simplest distribution-free 
second-order model is used. Moreover, it is assumed that 
the probabilistic averaging (ensemble averaging) and 
spatial averaging (volume averaging) coincide. This is 
only a useful hypothesis that cannot be proved in frames 
of distribution-free theories. In geotechnical practice 
of soil testing, one cannot carry out any sequence of 
independent measurements at the same point - the list 
of fully non-invasive geotechnical tests is very short. 
Replacing the term ‘at the same point’ by a more liberal 
‘at the same place’ can be controversial; this difficulty 
leads to multiscale models, ambiguous definitions of 
‘representative volume elements’ (Ostoja-Starzewski 
2006) and nested micro-meso inhomogeneous models 
(Jaksa et al. 1999, Ching and Phoon 2013), which are not 
discussed here.

Several types of the decay functions r(Dx) became 
popular; four of them are discussed in detail by Vanmarcke 
(2010), Bagińska et al. (2016) and Oguz et al. (2019), the 
squared exponential (Gaussian) in particular (equation 
1a). Due to natural sedimentation processes over vast 
areas, the geological model of the subsoil can reveal 
a horizontally layered structure like for transversally 
isotropic continua; hence, the following squared 
exponential representation of the correlation function 
r(x;y) = r(x - y) is useful:

𝜌𝜌𝜌𝜌 = exp �− (𝑥𝑥𝑥𝑥1−𝑦𝑦𝑦𝑦1)2+(𝑥𝑥𝑥𝑥2−𝑦𝑦𝑦𝑦2)2

(𝑑𝑑𝑑𝑑h)2 � ⋅exp �− (𝑥𝑥𝑥𝑥3−𝑦𝑦𝑦𝑦3)2

(𝑑𝑑𝑑𝑑v)2 �                                        (1a) (1a)

where the symbols x3, y3, dv are used for vertical direction. 
Alternatively, the linear exponential (Markovian) function 
(equation 1b) is in use:

    
𝜌𝜌𝜌𝜌 = exp �− |𝑥𝑥𝑥𝑥1−𝑦𝑦𝑦𝑦1|+|𝑥𝑥𝑥𝑥2−𝑦𝑦𝑦𝑦2|

𝑑𝑑𝑑𝑑h′
� ⋅exp �− |𝑥𝑥𝑥𝑥3−𝑦𝑦𝑦𝑦3|

𝑑𝑑𝑑𝑑v′
�                                        (1b) (1b)

Although the equations (1a) and (1b) apply to general 3D 
situations, the points of interest x, y are often situated on 
certain specific subsets like along slide lines (surfaces) in 
ultimate limit states or limit equilibrium studies.

In data processing, sometimes a negative 
autocorrelation can happen that is beyond the scope of 
the exponential functions (1a and 1b); if such negative 
values are not incidental, and so if they are confirmed by 
significance tests, then a wider class of cosine exponents 
like exp{-½Dx½/d¢}×cos(½Dx½/d²) can be considered. Such 
a ‘more chaotic’ behaviour seems to be possible for 
anthropogenic soils, for example for lignite mine dumping 
soils (Bagińska et al. 2016) or low-quality sandy backfills 
(Brząkała, 1981); in the former case, averaged locally 
negative values up to r ~ -0.2 are reported (but not used, 
assumed d² = +¥) and in the latter one, the values are 
up to r ~ -0.5 (horizontal variability of a subsoil vertical 
response over a meso-scale laboratory field 4.2 m × 2.0 m, 
several dozens of testing points). The problem of negative 
autocorrelation for nearshore sea bottom soils is recently 
discussed by Oguz et al. (2019). The values derived from 
CPT tests in stiff, overconsolidated clays can also be 
negative (up to r ~ -0.2) (Jaksa et al. 1999). In the context 
of risk assessment and averaging, note that ignoring the 
negative values of r is usually on the safe side (Fig. 1b). 

The decay constants dv, dh (m) in equation (1a) 
control the speed of convergence to zero for increasing 
distances and they are in close relation to so-called scales 
of fluctuations di (Vanmarcke 2010, Bagińska et al. 2016, 
Pieczyńska-Kozłowska et al. 2017, Tietje et al. 2011), which 
are good intuitive measures of random fluctuations. 
The following definitions of d and d¢ are in use for 
unidirectional random variations due to equations (1a) 
and (1b), respectively:

 
δ = ∫ 𝜌𝜌𝜌𝜌(𝑟𝑟𝑟𝑟)𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟 = ∫ exp �− 𝑟𝑟𝑟𝑟2

𝑑𝑑𝑑𝑑2
� 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟 =+∞

−∞ √π
+∞
−∞ 𝑑𝑑𝑑𝑑                                  (2a) (2a)

  
 δ′ = ∫ 𝜌𝜌𝜌𝜌(𝑟𝑟𝑟𝑟)𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟 = 2∫ exp �− 𝑟𝑟𝑟𝑟

𝑑𝑑𝑑𝑑′
� 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟 =+∞

0 2𝑑𝑑𝑑𝑑′+∞
−∞                                  (2b)  (2b)

Empirical (discrete) correlation function re(r) can be 
applied to approximate a distance ro such that re(ro) » 0. 
In terms of both exponential functions r(r), this could be 
assumed as r(r) @ 0.05. If so, then ro=√3d and ro=3d‘; thus, 
d ~ √3d‘. In this way, the following working hypothesis is 
derived: d ~ 1.5d‘. A wider statistical analysis of the distance 
ro and its confidence limits were presented by Jaksa et al. 
(1999). For d >> 0, the model turns to a degenerate spatial 
random field – just a random variable; for d ~ 0, the model 



Stress-weighted spatial averaging of random fields in geotechnical risk assessment    469

turns to a very chaotic random field with uncorrelated 
succeeding values. 

There exist several sophisticated methods of 
evaluation of the d-value; selected techniques and 
numerical results were presented by Bagińska et al. 
(2016), Lloret-Cabot et al. (2014), Pieczyńska-Kozłowska 
et al. (2017), Phoon and Kulhawy (1999a) and Vanmarcke 
(2010). Standard CPT testing is most often used – in 
vertical direction, first of all (Oguz et al. 2019); a very 
original horizontal CPT testing has been presented by 
Jaksa et al. (1999). Although the CPT method provides a 
very large amount of data - continuous realisations of the 
soil resistance, as expected for a stochastic process qc(z) - 
the interpretation of results encounters difficulties.

In the common opinion dh >> dv, like the ratio dh/dv = 
10 used by Tietje et al. (2014); such proportion dh >> dv can 
be suggested by a regular sedimentation of geological 
units. Again, for the same reasons as in cases of c.o.v., 
there is no agreed opinion about representative values 
of the scales of fluctuations d. Moreover, in published 
data, the distinction between definitions in equations 
(2a) and (2b) is not always respected. For example, 
results of CPT soundings have been presented with the 
best fitted Gaussian curve (equation 1a) in the paper by 
Jaksa et al. (1999) - the authors report measured cone 
tip resistance qc for which dv ~ 0.17 m (average value) 
with a c.o.v. on the level of 30%. Independently, another 
value ro @ 0.28 m can be estimated from the authors’ 
empirical plot of re(r), used in place of the least-square 
fitting; in this way, the following values can be derived: 
dv = √πdv=√πro/√3 @ ro @ 0.28 m. Similar estimation dv ~ 
0.8×5.3/20 = 0.21 m can be found from the same data 
using the Vanmarcke proposal dv ~ 0.8d, where d denotes 
the average distance between intersections of the 
fluctuating resistance qc and its parabolic trend function 
(Vanmarcke 2010, Jaksa et al. 1999). The horizontal scale 
of fluctuations dh was also analysed by Jaksa et al. (1999) 
and its nested structure was documented - the estimated 
results depend on the scale of sampling: dh ~ 0.15 m for 
CPT sampling at 5 mm intervals (so, dh @ dv), but dh ~ 
1-2 m for CPT sampling at 0.5 and 1.0 m. The authors’ 
conclusion says that ‘both the small-scale vertical and 
lateral correlation distances are a manifestation of the 
CPT and not the soil itself ’ (Jaksa et al. 1999). On the 
other hand, the review by Phoon and Kulhawy (1999a) 
is in sharp contrast to the conclusions presented by 
Jaksa et al. (1999), but the former review is focused on a 
wider spectrum of testing methods, not only on  the CPT 
sounding. For different geotechnical parameters, as well  
as for different testing techniques, there is generally dv 
~ 1.0-2.0 m (less than 1.0 m only for CPT tests), but dh is 

expressed in dozens of metres; so, the ratio dh/dv ~ 10 
is confirmed. The references presented by Shen et al. 
(2021) for the offshore soil in the North Sea report dv ~ 
0.48-7.14 m and dh ~ 24.62-66.48 m.

3.1  Conclusion

For the illustrative numerical examples presented 
hereafter, the range of dv = δv ⁄√π ~ 0.5-1.5 m and the 
range of dh = δh ⁄√π ~ 10-20 m can be assumed as some 
representative values.

4  Prototype of the geometric 
spatial averaging
Standard spatial averaging, called as a geometric one, has a 
well-documented mathematical background presented by 
Vanmarcke (2010); also, it has many practical applications 
(Vanmarcke 2010, Chwała 2019, Tietje et al. 2011, Ching et 
al. 2016, Puła and Chwała 2015). For a frictional material, 
where tan(j) > 0 and c = 0 (kPa), consider two intervals dL 
extracted from a sliding line and assume the two random 
variables shown in Fig. 1a: a random variable tan(j1) on 
the left part dL and a random variable tan(j2) on the right 
one.

Looking for one ‘effective’ parameter, the random 
vector (tan(j1);tan(j2)) is replaced by one averaged 
random variable tan(j)ga acting along 2dL. Assume the 
homogeneity condition: E{tan(ji)} = m, Var{tan(ji)} = s2; 
moreover, Cov{tan(j1);tan(j2)} = s2×r1;2. The values dL 
are geometric weighting coefficients and the intuitively 
averaged (homogenised) friction coefficient [tan(j)]ga on 
2dL can be calculated as a new random variable: 

  [tan(φ)]ga = [tan(φ1) ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + tan(φ2) ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑] (2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)⁄ = 1
2
∙ tan(φ1) + 1

2
∙ tan(φ2)             (3) 

 
  [tan(φ)]ga = [tan(φ1) ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + tan(φ2) ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑] (2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)⁄ = 1

2
∙ tan(φ1) + 1

2
∙ tan(φ2)             (3) 

(3)

Therefore, E{[tan(j)]ga} = m, Var{[tan(j)]ga} = s
2×(1 + r1;2)/2 

< Var{tan(ji) = s2. The variance reduction factor equals gga 
= Var{[tan(j)]ga}/Var{tan(ji) = (1 + r1;2)/2 = 1 -(1 - r1;2)/2; 
the lower index g refers to the purely geometric sense of 
equation (3). Note that potentially, the randomness of 
[tan(j)]ga in equation (3) can even disappear, if always 
both random fluctuations of tan(j1) and tan(j2) happen as 
opposite numbers, thus taking the hypothetic correlation 
coefficient r1;2 = -1.
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Generalisations of the geometric averaging are 
straightforward, if for a longer interval AB, the sum in 
equation (3) is replaced by an integral over this line AB:

     
[tan(φ)]ga =

∫ tan�𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥)�𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

|𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴| =
∫ tan�𝜑𝜑𝜑𝜑(𝑥𝑥𝑥𝑥)�𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

∫ 1𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴

                                        (4) (4)

where the interval length equals |AB|; the definition is 
similar for surfaces in spatial cases (Vanmarcke 2010).

5  Generalised methodology: 
prototype of the stress-weighted 
spatial averaging
Ultimate limit state for random shearing is a start point 
of this approach due to the context of the random 
vector (tan(j1);tan(j2)). For the frictional material, the 
two variables tan(j1), tan(j2) should be considered in 
conjunction with two normal deterministic loadings in 
Fig. 1a, qn1 = const > 0, qn2 = const > 0. The random shearing 
resistance along AB can be expressed as:

  
       2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛1 ∙ tan(𝜑𝜑𝜑𝜑1) ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛2 ∙ tan(𝜑𝜑𝜑𝜑2) ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑                                    (5a) (5a)

Looking for one ‘equivalent’ random variable [tan(j)]sa on 
the same interval AB:

 
  2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛1 ∙ [tan(ϕ)]sa ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛2 ∙ [tan(ϕ)]sa ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = [tan(ϕ)]sa ∙ [𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛1+𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛2] ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑       (5b) 

  2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛1 ∙ [tan(ϕ)]sa ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛2 ∙ [tan(ϕ)]sa ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = [tan(ϕ)]sa ∙ [𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛1+𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛2] ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑       (5b) (5b)

Therefore, on comparing the two equations (5a) and (5b):

 [tan(φ)]sa = 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛1∙tan(φ1)+𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛2∙tan(φ2)
𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛1+𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛2

= 𝑤𝑤𝑤𝑤1 ∙ tan(φ1) +𝑤𝑤𝑤𝑤2 ∙ tan(φ2)                       (6) 

 [tan(φ)]sa = 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛1∙tan(φ1)+𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛2∙tan(φ2)
𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛1+𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛2

= 𝑤𝑤𝑤𝑤1 ∙ tan(φ1) +𝑤𝑤𝑤𝑤2 ∙ tan(φ2)                       (6) 
(6)

where the dimensionless weight coefficients wi > 0 equal 
w1 = qn1/(qn1 + qn2), w2 = qn2/(qn1 + qn2), w1 + w2 = 1.

In particular, the local contribution of tan(j1) is 
negligible if qn1 << qn2, w1 << w2, so the randomness is 
localised, almost not averaged. If a (potentially possible) 
physical dependence between qn and tan(j) is ignored, 
then E{[tan(j)]sa} = w1m + w2m = m and Var{[tan(j)]sa} = 

[1 - 2w1w2(1 - r1;2)]s2.
Therefore, the variance reduction factor equals gsa = 

Var{[tan(j)]sa}/s2 = 1 - 2w1(1 - w1)(1 - r1;2); the lower 
index s refers to the stress-weighted averaging. The 
variance reduction factor gsa defined above is sensitive to 
qn gradients and depends on the ratio qn1/qn2, what is not 
true for the variance reduction factor gga = 1 -(1 - r1;2)/2, 
which is stress-independent. The following inequality gga 

£ gsa is true, but gga = gsa if and only if w1 = w2 = 1/2, like for 
five dots depicted in Fig. 1b. To conclude, the geometric 
averaging has only an intuitive character, weakly related 
to the shearing resistance of frictional materials; the 

(a)  (b) 
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Figure 1: (a) Prototype defined by two random variables tan(ji), i = 1, 2. (b) Variance reduction factors ga(w1), depending on the dimensionless 
weight coefficient w1.
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overestimation of the beneficial variance reduction gga 

£ gsa can be dangerous in safety evaluation. Parabolic 
functions gsa(w1) are depicted in Fig. 1b for five different 
correlation coefficients r = r1;2.

Passage to a discrete multiterm sum for n > 2 random 
variables is straightforward; the same applies for a second-
order stochastic process tan(j(x)) with an autocorrelation 
function r(x;y) along the interval AB, where E{tan(j(x))} 
= m = const, Var{tan(j(x)} = s2 = const. The shearing 
resistance T is a random variable generated by the 
stationary stochastic process tan(j(x)) in the formula:

𝑑𝑑𝑑𝑑 = ∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥) ∙ tan(φ(𝑥𝑥𝑥𝑥))𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴                                                  (7a)  (7a) 

Looking for an equivalent simplified model, the stochastic 
process tan(j(x)) is replaced by a random variable  
[tan(j)]sa = const(x). If so, the same random variable T has 
the following form:

𝑑𝑑𝑑𝑑 = ∫ [tan(φ)]sa ∙ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴 = [tan(φ)]sa ∙ ∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝐴𝐴𝐴𝐴

𝐴𝐴𝐴𝐴                            (7b) 

𝑑𝑑𝑑𝑑 = ∫ [tan(φ)]sa ∙ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴 = [tan(φ)]sa ∙ ∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝐴𝐴𝐴𝐴

𝐴𝐴𝐴𝐴                            (7b) (7b)

Both alternative expressions for the same random variable 
T formulate the background for the definition of [tan(j)]sa;  
if equations (7a) and (7b) are compared, the following 
definition can be obtained:

[tan(φ)]sa =
∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)∙tan(φ(𝑥𝑥𝑥𝑥))𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥  𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴

∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥  𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴

                                                 (8) (8)

Therefore,

𝐸𝐸𝐸𝐸{[tan(φ)]sa} =
∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)∙𝐸𝐸𝐸𝐸{tan(φ(𝑥𝑥𝑥𝑥))}𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥  𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴

∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥  𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴

=
∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)∙µ 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥  𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴

∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥  𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴

= 𝜇𝜇𝜇𝜇                              (9a) 

𝐸𝐸𝐸𝐸{[tan(φ)]sa} =
∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)∙𝐸𝐸𝐸𝐸{tan(φ(𝑥𝑥𝑥𝑥))}𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥  𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴

∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥  𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴

=
∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)∙µ 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥  𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴

∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥  𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴

= 𝜇𝜇𝜇𝜇                              (9a) 
(9a)

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟{[tan(φ)]sa} =
∫ ∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)∙𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑦𝑦𝑦𝑦)∙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶{tan(φ(𝑥𝑥𝑥𝑥)) ;tan(φ(𝑦𝑦𝑦𝑦))}𝐵𝐵𝐵𝐵

𝐴𝐴𝐴𝐴 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴

�∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥  𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴 �

2                             (9b) 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟{[tan(φ)]sa} =
∫ ∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)∙𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑦𝑦𝑦𝑦)∙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶{tan(φ(𝑥𝑥𝑥𝑥)) ;tan(φ(𝑦𝑦𝑦𝑦))}𝐵𝐵𝐵𝐵

𝐴𝐴𝐴𝐴 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴

�∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥  𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴 �

2                             (9b) 
(9b)

The dimensionless variance reduction factor equals

𝛾𝛾𝛾𝛾sa = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟{[tan(φ)]sa}
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟{tan(φ(𝑥𝑥𝑥𝑥))} = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟{[tan(φ)]sa}

𝜎𝜎𝜎𝜎2
=

∫ ∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)∙𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑦𝑦𝑦𝑦)∙ρ(𝑥𝑥𝑥𝑥;𝑦𝑦𝑦𝑦)𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦𝐵𝐵𝐵𝐵

𝐴𝐴𝐴𝐴

�∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥  𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴 �

2 ≤ 1                   (10) 

𝛾𝛾𝛾𝛾sa = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟{[tan(φ)]sa}
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟{tan(φ(𝑥𝑥𝑥𝑥))} = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟{[tan(φ)]sa}

𝜎𝜎𝜎𝜎2
=

∫ ∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)∙𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑦𝑦𝑦𝑦)∙ρ(𝑥𝑥𝑥𝑥;𝑦𝑦𝑦𝑦)𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦𝐵𝐵𝐵𝐵

𝐴𝐴𝐴𝐴

�∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥  𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴 �

2 ≤ 1                   (10) 
(10)

where r(x;y) = r(x - y) because of the assumed 
homogeneity; the expression (10) has only loose ties with 
the approximate variance reduction factor proposed for 
practical applications by Vanmarcke (2010): G2 = min{1; 
d/|AB|}.

Only if qn = const along AB, then the geometric 
averaging coincides with stress-weighted averaging, but 
generally the latter one is more representative.

Simple numerical results are presented in Fig. 2; a 
fixed interval AB of length½AB½=7 m is loaded in a localised 
way on [0;7]: qn(x) = 0 on [0;S], 0 £ S < 7, and qn(x) = q = 
const > 0 on (S;7], so in the Heaviside form, qn(x) = q×[H(x 
- S) - H(x - 7)]; the Gaussian autocorrelation r(x;y) = 
exp{-[(x-y)/d]2}, 0 £ x, y £ 7 is assumed. Both methods 
coincide if and only if S = 0 (four dots on the vertical axis), 
but gga < gsa elsewhere; the geometric spatial averaging is 
insensitive to the length S, which describes very different 
stresses along AB.

6  Example: resistance against 
horizontal sliding
As a practical example, consider the standard GEO-sliding 
stability condition (EN 1997-1) for a massive shallow 
foundation BxLxh, where -B/2 £ x1 £ +B/2 and -L/2 £ x2 £ 
+L/2. Define normal (vertical) contact stresses under the 
footing as qn(x1,x2) = qn(x) ³ 0. The foundation base BxL is 
horizontal and ‘rough’, that is, the stabilising horizontal 
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Figure 2: The dimensionless variance reduction factors gsa(S) 
depending on the correlation parameter d (m) and the stress 
parameter S (m).
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force can be calculated from the simple frictional model as 
T = V×tan(j), if the subsoil is cohesionless; note that this 
deterministic model does not depend on the eccentricities 
of the deterministic vertical load V called as eB and eL, 

respectively. 
In the random variable format, the friction coefficient 

tan(j) in the expression T = V×tan(j) has a mean value m 
and a variance s2, so E{T} = Vm, Var{T} = V2s2. For a second-
order homogeneous isotropic random field tan(j(x1,x2)) = 
tan(j(x)) and the random shearing resistance, T can be 
expressed following equations (7a) and (7b), that is:

𝑑𝑑𝑑𝑑 = ∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥� ∙ tan �𝜑𝜑𝜑𝜑�𝑥𝑥𝑥𝑥��𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 and, on the other hand, 𝑑𝑑𝑑𝑑 = [tan(φ)]sa⋅∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥     (11)  and, 
on the other hand, 𝑑𝑑𝑑𝑑 = ∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥� ∙ tan �𝜑𝜑𝜑𝜑�𝑥𝑥𝑥𝑥��𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 and, on the other hand, 𝑑𝑑𝑑𝑑 = [tan(φ)]sa⋅∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥     (11) (11)

Therefore,

 [tan(φ)]sa =
∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥�∙tan�𝜑𝜑𝜑𝜑�𝑥𝑥𝑥𝑥��𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥�𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥
 and eventually, 𝛾𝛾𝛾𝛾sa =

∫ ∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥�⋅𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑦𝑦𝑦𝑦�∙𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ρ�𝑥𝑥𝑥𝑥;𝑦𝑦𝑦𝑦�⋅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦 

�∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥�𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥�
2       (12) 

 [tan(φ)]sa =
∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥�∙tan�𝜑𝜑𝜑𝜑�𝑥𝑥𝑥𝑥��𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥�𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥
 and eventually, 𝛾𝛾𝛾𝛾sa =

∫ ∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥�⋅𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑦𝑦𝑦𝑦�∙𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ρ�𝑥𝑥𝑥𝑥;𝑦𝑦𝑦𝑦�⋅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦 

�∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥�𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥�
2       (12) 

(12)

Note that the vertical coordinate x3 (or simply z) is not 
used in this model.

The presented numerical example employs the 
horizontally isotropic Gaussian autocorrelation function 
r(x;y) = exp{-[(x1 - y1)/dh]2 - [(x2 - y2)/dh]2}; following 
the recommendations of the Eurocode 7 (EN 1997-1), the 
vertical contact stress qn under the footing can be assumed 
as a double linear function like qn(x) = ao + a1x1 + a2x2 (kPa). 
Consider a symmetrical case B = L = 10 m, V =10 MN, q = V/
(B×L) = 100 kPa, eB = eL = e (m) ³ 0.

If both eccentricities 0 £ e < 10/12 m, then under the 
corners: q1 = 100 + 120×e, q2 = q3 = 100, q4 = 100 - 120×e > 0, 
so qn(x) = 100 + 12×e×(x1 + x2) (kPa).

If both eccentricities e > 10/12, then a gap appears 
under foundation (zero contact stress, locally); for 
a maximal value e = 30/12 m, which is the maximal 
acceptable by the Eurocode 7, there is qn(x) = max{0;60×(x1 

+ x2)} (kPa). 
The values of the variance reduction factor gsa are 

depicted in Fig. 3 for e £ 30/12 m.
The geometric spatial averaging and the variance 

reduction factor gga do not depend on the eccentricities 
e and they overestimate the variance reduction effects 
(four dots in Fig. 3). Special attention should be paid to 
the curves for d ~ 20 m and d ~ 10 m, which correspond 
to the most realistic values of the horizontal correlation 
parameter dh:

	– for dh = 10 m, the variance reduction gsa is on the level 
of 74%-87%, whereas gga = 74%;

	– for dh = 20 m, the variance reduction gsa is only on the 
level of 92%-97%, whereas gga = 92% and

	– for dh = 30 m, the variance reduction gsa is only on the 
level of 96%-99%, whereas gga = 96%.

6.1  Conclusion

The results are close to each other and for dh ³ 20 m, 
both horizontal variance reductions are not significant; 
still much greater L or B (for dams, weirs, etc.) would 
be necessary to observe greater reduction. Both spatial 
averaging methods do not seem to be necessary for such 
proportions of the object dimensions B, L and dh, that is, 
if dh/L > 2-3. 

7  Example: settlement analysis of a 
shallow foundation
The integral equations (7)-(10) apply not only to shearing 
resistance, but also to settlement analysis and to any linear 
operator, in fact. In a simplified linear form suggested by 
the Eurocode 7 (EN 1997-1), the foundation settlement w 
(m) can be estimated as follows:

𝑤𝑤𝑤𝑤 = ∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑧𝑧𝑧𝑧)⋅𝐷𝐷𝐷𝐷(𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧max
0                                              (13a) (13a)

The symbol D(z) > 0 (1/kPa) denotes a random deformation 
modulus – stationary stochastic process as a function of 
the depth x3 = z > 0 under foundation. 

The following equivalent [D]sa = const(z) as a 
corresponding random variable can be introduced:

0
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d = 10.0

d = 5.0

γsa(e) 

Figure 3: The dimensionless variance reduction factors gsa(e) 
depending on the correlation parameter d = dh (m) and the load 
eccentricities eB = eL = e (m).
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𝑤𝑤𝑤𝑤 = ∫ [𝐷𝐷𝐷𝐷]sa ∙ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧max
0  = [𝐷𝐷𝐷𝐷]sa ∙ ∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧max

0                               (13b) 

𝑤𝑤𝑤𝑤 = ∫ [𝐷𝐷𝐷𝐷]sa ∙ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧max
0  = [𝐷𝐷𝐷𝐷]sa ∙ ∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧max

0                               (13b) 
(13b)

Equations (13a) and (13b) define the random variable [D]sa.
Equations (13a) and (13b) are focused on a finite 

interval 0 £ z £ zmax under a shallow footing; taking into 
account a founding depth hf under the ground surface, the 
value of zmax can be estimated from the equation g×(hf/B + 
zmax/B)×B×0.2 = qn(zmax) (EN 1997-1), where g×(hf + z) denotes 
vertical stresses in situ for a dry soil and g (kN/m3) is the 
subsoil unit weight. The average vertical stress qn under 
a rectangular footing BxL vanishes with depth z; usually, 
the integrated Steinbrenner formula is in use (a double 
integral of the Boussinesq solution) or just the following 
simplified estimation: qn(z) = V/[(B + z)×(L + z)] = q/[(1 + 
z/B)(1 + bz/B)] for b = B/L £ 1, q = V/(BL) = const > 0. 
The deterministic depth zmax depends on the b coefficient 
as in Fig. 4. It is assumed that random fluctuations of D(z) 
do not change the deterministic load function qn(z) and 
vice versa. 

The stochastic parameter D(z) (1/kPa) needs a 
comment. Clearly, the random deformation modulus 
D(z) corresponds to 1/E(z) or 1/M(z) by making use of the 
Young modulus E or the oedometric modulus M of the 
subsoil; both are assumed as stochastic processes. As far 
as distribution-free models are considered, the first two 
moments E{D(z)} = m = const(z), Var{D(z)} = s2 = const(z), 
Cov{D(z1);D(z2)} = s2r(z1 - z2) cannot be derived from the 
corresponding moments E{M(z)}, Cov{M(z1);M(z2)} – the 
model should be completed by some joint probability 
distributions of the stochastic process M(z); in particular, 
correlated lognormal random variables M(z1), M(z2) can 
be useful. Alternatively, the first-order perturbation is 
acceptable for a ‘small’ variance of M(z); also, an adequate 
data pre-processing can be recommended to apply the 
sample statistics directly to 1/M, not to M, because the 
stationarity of both 1/M and M has different conditions.

Equations (13a) and (13b) yield the variance of the 
averaged deformation modulus Var{[D]sa} and then the 
variance reduction factor equals: 

𝛾𝛾𝛾𝛾sa = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟{[𝐷𝐷𝐷𝐷]sa}
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟{𝐷𝐷𝐷𝐷(𝑧𝑧𝑧𝑧)} =

∫ ∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑧𝑧𝑧𝑧1)∙𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑧𝑧𝑧𝑧2)∙ρ(𝑧𝑧𝑧𝑧1;𝑧𝑧𝑧𝑧2)𝑧𝑧𝑧𝑧max
0 𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧1𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧2

𝑧𝑧𝑧𝑧max
0

�∫ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛(𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧  𝑧𝑧𝑧𝑧max
0 �

2 ≤ 1                              (14) (14)

Spatial horizontal random fluctuations are much less 
significant for such rectangular footing BxL; they are not 
considered here (dh >> dv). 

The numerical example in Fig. 4 uses the Gaussian 
autocorrelation function r(z1;z2) = exp{-[(z1 - z2)/dv]2}, 0 £ 
z1, z2 £ zmax; the subsoil unit weight g = 18 kN/m3, q = 250 
kPa, hf/B = 2 and the foundation width B = 1 m. For such 
fixed data, the effective dimensionless zmax/B depends on 
the dimensionless shape coefficient b = B/L £ 1 as in Fig. 
4; the shape ratio b = 0 corresponds to an infinite beam 
and b = 1 corresponds to a square footing. 

The geometric variance reduction factor gga in Fig. 5 is 
also derived from equation (14) for the same zmax, but for 
qn = const(z). Differences between the factors gsa and gga in 
Fig. 5 are significant. 
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Figure 4: The effective depth zmax under considered foundation and 
the dimensionless variance reduction factor gsa(b) depending on the 
correlation parameter d = dv (m) and the footing shape ratio b.
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Figure 5: The dimensionless variance reduction factors gsa(b) and 
gga(b) for the correlation parameters dv = d = 1.5 m (solid lines) and dv 
= d = 0.5 m (dashed lines).
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8  Cohesive soils
For perfectly cohesive materials, the shearing resistance 
in Fig. 1a equals 2dT = c1×dL + c2×dL and is replaced by 
2dT = [c]a×dL + [c]a×dL; hence, [c]a = (c1 + c2)/2. For such a 
case, the geometric spatial averaging (Vanmarcke 2010) is 
representative because the model is independent of the 
normal stress qn > 0. There is only one averaged cohesion:

[𝑐𝑐𝑐𝑐]𝑉𝑉𝑉𝑉 = [𝑐𝑐𝑐𝑐]sa = [𝑐𝑐𝑐𝑐]ga =
∬ 𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷 �𝑥𝑥𝑥𝑥�𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

∬ 1𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥
                                            (15) (15)

and only one dimensionless reduction coefficient ga = gsa = gga. 
To be precise, there exist some rare exceptions because 

this is not the soil cohesion (or adhesion) itself which 
generates the shearing resistance, but the soil cohesion (or 
adhesion) on a real contact with the foundation. As in section 
6, a gap can appear under a rigid foundation for ‘great’ 
eccentricities e, hence the averaging is limited (localised) 
only to a soil-foundation direct contact (qn > 0); to a certain 
extent, for a rigid foundation, the model is not completely 
independent of qn, so gga can be less than gsa also for perfectly 
cohesive soils. This aspect is not analysed below. 

Although the Tresca model with tan(j) º 0, c > 
0 found certain practical applications to undrained 
bearing capacity, this is, however, a peculiar case. 
Generally, the shearing ultimate limit states are 
stress dependent, not only for the Coulomb material. 
In a general case of t(x) = qn(x)×tan(j(x)) + c(x), 
two homogeneous random fields are considered 
for a frictional-cohesive soil. Both autocovariance  
functions are completed by a crosscovariance function 
Cov{tan(j(x));c(y)} = stan(j)×sc×rtan(j);c×rtan(j);c(x - y). 
More or less significant distinctions between the decay 
functions rtan(j)(x - y), rc(x - y) and rtan(j);c(x - y)  
are possible. If qn(x) > 0, then the usual definition of 
a local shear coefficient tan(y(x)) = tan(j(x)) + c(x)/
qn(x) > tan(j(x)) reduces the situation to an equivalent 
cohesionless material. The new random field tan(y(x)) 
is not homogeneous if qn(x) ¹ const(x); in particular, 
E{tan(y(x))} = mtan(j) + mc/qn(x), Var{tan(y(x))} ¹ const(x). 
By making use of the procedure defined by equations (7) 
and (8) for the frictional soil,

(16b)

  
𝑑𝑑𝑑𝑑 �tan �𝜑𝜑𝜑𝜑�𝑥𝑥𝑥𝑥�� ; 𝑐𝑐𝑐𝑐(𝑥𝑥𝑥𝑥)� = ∬ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥� ∙ tan �ψ�𝑥𝑥𝑥𝑥��𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥                                  (16a) (16a)

  𝑑𝑑𝑑𝑑([tan(ψ)]sa) = ∬ [tan(ψ)]sa ∙ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥�𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = [tan(ψ)]sa ∙ ∬ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥�𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥                 (16b) 

𝑑𝑑𝑑𝑑([tan(ψ)]sa) = ∬ [tan(ψ)]sa ∙ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥�𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = [tan(ψ)]sa ∙ ∬ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥�𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥                 (16b) 

Therefore,

  [tan(ψ)]sa =
∬ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥�∙tan�𝜑𝜑𝜑𝜑�𝑥𝑥𝑥𝑥��𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥+∬ 𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷 �𝑥𝑥𝑥𝑥�𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

∬ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥�𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥
= [tan(ϕ)]sa + [𝑐𝑐𝑐𝑐]𝑉𝑉𝑉𝑉 ∙

∬ 1𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

∬ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥�𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥
             (17)                                           

[tan(ψ)]sa =
∬ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥�∙tan�𝜑𝜑𝜑𝜑�𝑥𝑥𝑥𝑥��𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥+∬ 𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷 �𝑥𝑥𝑥𝑥�𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

∬ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥�𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥
= [tan(ϕ)]sa + [𝑐𝑐𝑐𝑐]𝑉𝑉𝑉𝑉 ∙

∬ 1𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥

∬ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥�𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥
             (17)                                           

(17)

Here, the variance reduction factor (equation 10) is less 
useful because it is a position-dependent function (in the 
denominator):

γsa = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟{[tan(ψ)]sa}

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟�tan�ψ�𝑥𝑥𝑥𝑥���
, x ∈D                                                        (18) (18)

Alternatively, the vectorial random field (tan(j(x));c(x)) 
can be replaced by the equivalent random vector 
([tan(j)]sa;[c]a) by making use of the previously defined 
averages. Depending on a stress level of qn(x) – not only 
on gradients – either the value [tan(j)]sa or [c]a dominates 
in the averaging; thus, the interpretation becomes 
more complex. To overcome this difficulty, the effect 
of the variance reduction can be studied in terms of the 
random shearing resistance T, not in terms of its strength 
parameters. Therefore,

γsa = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟{𝑇𝑇𝑇𝑇([tan(𝜑𝜑𝜑𝜑)]𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠;[𝑐𝑐𝑐𝑐]𝑠𝑠𝑠𝑠)}
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟{𝑇𝑇𝑇𝑇(tan(𝜑𝜑𝜑𝜑);𝑐𝑐𝑐𝑐)}  = 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟�[tan(𝜑𝜑𝜑𝜑)]sa∙∬ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥�𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥+[𝑐𝑐𝑐𝑐]𝑠𝑠𝑠𝑠∙∬ 1𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥�

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟�tan(𝜑𝜑𝜑𝜑)⋅∬ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥�𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥+𝑐𝑐𝑐𝑐⋅∬ 1𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥�
                        (19) 

γsa = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟{𝑇𝑇𝑇𝑇([tan(𝜑𝜑𝜑𝜑)]𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠;[𝑐𝑐𝑐𝑐]𝑠𝑠𝑠𝑠)}
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟{𝑇𝑇𝑇𝑇(tan(𝜑𝜑𝜑𝜑);𝑐𝑐𝑐𝑐)}  = 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟�[tan(𝜑𝜑𝜑𝜑)]sa∙∬ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥�𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥+[𝑐𝑐𝑐𝑐]𝑠𝑠𝑠𝑠∙∬ 1𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥�

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟�tan(𝜑𝜑𝜑𝜑)⋅∬ 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛�𝑥𝑥𝑥𝑥�𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥+𝑐𝑐𝑐𝑐⋅∬ 1𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥�
                        (19) 

(19)

The random solution T(tan(j);c) in the denominator 
operates simply on the (correlated) random variables 
tan(j), c, yielding from the random fields tan(j(x)), c(x) 
when ignoring their spatial effects, that is, for r(x;y) º 1.

9  Example: wedge stability

9.1  Data analysis

A simple discretised random field which corresponds 
to Fig. 1a is depicted in Fig. 6. For a potential sliding 
mechanism in 2D, four crosscorrelated random variables 
are considered: X1 = tan(j1), X2 = tan(j2), X3 = c1, X4 = c2; the 
sliding wedge is split into two homogeneous triangles 
ADB and DCB.
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The randomly inhomogeneous material corresponds 
to a silty-clayey sand. The second-order moments are 
assumed as follows: E{tan(ji)} = 0.5, stan(ji) = 0.125, ntan(ji) = 
25%, E{ci} = 10.0 kPa, sci = 4.0 kPa, nci = 40%. The covariance 
matrix is presented in Table 1, and dimensionless 
correlation coefficients are depicted in Table 2.

The second-order moments of the random variables 
tan(ji), cj are assumed as the discrete input data; if they 
are discretised from the continuous spatial moments, like 
Cov{tan(j(x));c(y)} in the random field formulation, then 
they are ‘close’ to mid-point values on AD, DC, but are 
not exactly the same - particularly, if the distinguished 
macro-homogeneous regions are not ‘small’. This aspect 
is not considered here.

9.2   Results of the presented parameter-
averaging procedures 

The obtained averaged values of the friction coefficients 
are as follows: 

[tan(j)]ga = [tan(j1)×L1 + tan(j2)×L2]/(L1 + L2) = 
0.511×tan(j1) + 0.489×tan(j2)

Var{[tan(j)]ga} = 0.00860 = 0.550×0.1252,  
gga = Var{[tan(j)]ga}/Var{tan(j)} = 0.55

[tan(j)]sa = [tan(j1)×G1 + tan(j2)×(G2 + Q)]×cos(a)/[(G1 + G2 

+ Q)×cos(a)] = 0.196×tan(j1) + 0.804×tan(j2)
Var{[tan(j)]sa} = 0.0112 = 0.716×0.1252,  

gsa = Var{[tan(j)]sa}/Var{tan(j)} = 0.72 > 0.55.

Moreover, 

[c]a = [c]ga = [c]sa = (c1L1 + c2L2)/(L1 + L2) =  
0.511c1 + 0.489c2, 

Var{[c]a} = 8.803 = 0.550×4.02, ga = gga = gsa =  
Var{[c]a}/Var{c} = 0.55.

New ‘macro’ correlation coefficients are negative and they 
equal:
–0.33 between the random variable [tan(j)]ga and the 
random variable [c]a and
–0.28 between the random variable [tan(j)]sa and the 
random variable [c]a.

Var{T([tan(j)]ga;[c]ga} = 1040, Var{T([tan(j)]sa;[c]sa} = 1310, 
Var{T(tan(j;c} = 1975; therefore, the definition in equation 
(19) results in gsa = 1310/1975 = 0.66 > gga = 1040/1975 = 0.53.  

The design situation is as follows: 
 For the slope β = 41o 
 For the wedge α = 24o 
  BC = 4.0 m 
  AD = L1 = 4.6 m, DC = L2 = 4.4 m 
  Unit weight γ = 18 kN/m3 
  G1 = 67 kN/m, G2 = 64 kN/m 
  Q = 3.5 m⋅60 kPa = 210 kN/m 

C 

Q 

‘1’ 
‘2’ tan(ϕϕ1),c1 

tan(ϕϕ2),c2 

G1 
G2 

β 

A α 
D 

B 

Figure 6: Simplified wedge stability for 2x2 random variables tan(ji), ci, i = 1, 2.

Table 1: Auto- and cross-covariances used in numerical calculations.

Cov{Xi;Xj} tan(j1) (-) tan(j2) (-) c1 (kPa) c2 (kPa)

tan(j1) (-) 0.015625 0.0015625 -0.15 -0.03

tan(j2) (-) 0.0015625 0.015625 -0.03 -0.15

c1 (kPa) -0.15 -0.03 16 1.6

c2 (kPa) -0.03 -0.15 1.6 16

Table 2: Auto- and crosscorrelation coefficients used in numerical 
calculations.

rij tan(j1) tan(j2) c1 c2

tan(j1) 1 +0.10 -0.30 -0.06

tan(j2) +0.10 1 -0.06 -0.30

c1 -0.30 -0.06 1 +0.10

c2 -0.06 -0.30 +0.10 1
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9.3   Random factors of safety

Since the wedge stability is analysed, the randomness of 
the factor of safety (FS) requires a further numerical study. 
The standard FS is defined using the stabilising frictional-
cohesive force Tstab and the destabilising shearing one Tdst:

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑇𝑇𝑇𝑇stab
𝑇𝑇𝑇𝑇dst

= 𝐺𝐺𝐺𝐺1∙cos(𝛼𝛼𝛼𝛼)∙tan(𝜑𝜑𝜑𝜑1)+(𝐺𝐺𝐺𝐺2+𝑄𝑄𝑄𝑄)∙cos(𝛼𝛼𝛼𝛼)∙tan(𝜑𝜑𝜑𝜑2)+𝐵𝐵𝐵𝐵1∙𝑐𝑐𝑐𝑐1+𝐵𝐵𝐵𝐵2∙𝑐𝑐𝑐𝑐2
𝐺𝐺𝐺𝐺1∙sin(𝛼𝛼𝛼𝛼)+(𝐺𝐺𝐺𝐺2+𝑄𝑄𝑄𝑄)∙sin(𝛼𝛼𝛼𝛼)                          (20a) 

  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑇𝑇𝑇𝑇stab
𝑇𝑇𝑇𝑇dst

= 𝐺𝐺𝐺𝐺1∙cos(𝛼𝛼𝛼𝛼)∙tan(𝜑𝜑𝜑𝜑1)+(𝐺𝐺𝐺𝐺2+𝑄𝑄𝑄𝑄)∙cos(𝛼𝛼𝛼𝛼)∙tan(𝜑𝜑𝜑𝜑2)+𝐵𝐵𝐵𝐵1∙𝑐𝑐𝑐𝑐1+𝐵𝐵𝐵𝐵2∙𝑐𝑐𝑐𝑐2
𝐺𝐺𝐺𝐺1∙sin(𝛼𝛼𝛼𝛼)+(𝐺𝐺𝐺𝐺2+𝑄𝑄𝑄𝑄)∙sin(𝛼𝛼𝛼𝛼)                          (20a) 

(20a)

By analogy, the dimensionless variance reduction factors 
are expressed as a fraction of Var{FS(tan(j);c)}, where 
FS(tan(j);c) is calculated using the point variances of the 
random field, that is, stan(j) = 0.125 and sc = 4.0 kPa.

1)	 Reference case No. 1: the model of two random 
variables, not averaged.

Ignoring the spatial randomness, as in the denominator 
of equation (19), so for the model of two correlated random 
variables tan(j1) = tan(j2) = tan(j) and c1 = c2 = c (no spatial 
decay function, r º 1), equation (20a) becomes:

  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑇𝑇𝑇𝑇stab
𝑇𝑇𝑇𝑇dst

= [𝐺𝐺𝐺𝐺1∙cos(𝛼𝛼𝛼𝛼)+(𝐺𝐺𝐺𝐺2+𝑄𝑄𝑄𝑄)∙cos(𝛼𝛼𝛼𝛼)]∙tan(𝜑𝜑𝜑𝜑)+(𝐿𝐿𝐿𝐿1+𝐿𝐿𝐿𝐿2)∙𝑐𝑐𝑐𝑐
𝐺𝐺𝐺𝐺1∙sin(𝛼𝛼𝛼𝛼)+(𝐺𝐺𝐺𝐺2+𝑄𝑄𝑄𝑄)∙sin(𝛼𝛼𝛼𝛼) = tan(𝜑𝜑𝜑𝜑)

tan(𝛼𝛼𝛼𝛼) + (𝐿𝐿𝐿𝐿1+𝐿𝐿𝐿𝐿2)∙𝑐𝑐𝑐𝑐
𝐺𝐺𝐺𝐺1∙sin(𝛼𝛼𝛼𝛼)+(𝐺𝐺𝐺𝐺2+𝑄𝑄𝑄𝑄)∙sin(𝛼𝛼𝛼𝛼)        (20b) 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑇𝑇𝑇𝑇stab
𝑇𝑇𝑇𝑇dst

= [𝐺𝐺𝐺𝐺1∙cos(𝛼𝛼𝛼𝛼)+(𝐺𝐺𝐺𝐺2+𝑄𝑄𝑄𝑄)∙cos(𝛼𝛼𝛼𝛼)]∙tan(𝜑𝜑𝜑𝜑)+(𝐿𝐿𝐿𝐿1+𝐿𝐿𝐿𝐿2)∙𝑐𝑐𝑐𝑐
𝐺𝐺𝐺𝐺1∙sin(𝛼𝛼𝛼𝛼)+(𝐺𝐺𝐺𝐺2+𝑄𝑄𝑄𝑄)∙sin(𝛼𝛼𝛼𝛼) = tan(𝜑𝜑𝜑𝜑)

tan(𝛼𝛼𝛼𝛼) + (𝐿𝐿𝐿𝐿1+𝐿𝐿𝐿𝐿2)∙𝑐𝑐𝑐𝑐
𝐺𝐺𝐺𝐺1∙sin(𝛼𝛼𝛼𝛼)+(𝐺𝐺𝐺𝐺2+𝑄𝑄𝑄𝑄)∙sin(𝛼𝛼𝛼𝛼)        (20b) 

(20b)

In the considered case FS = FS(tan(j);c) = 2.25×tan(j) + 
0.0649×c; so, E{FS(tan(j);c)} = 1.77 and Var{FS(tan(j);c)} 
= 0.1030.

2)	 Reference case No. 2: the exact model with two 
random fields (two random vectors in discretisation, that 
is, four random variables), not averaged (Fig. 6).

The explicit equation (20a) is used which has the 
following form:
FS = FS(tan(j1),tan(j2);c1,c2) = 0.441×tan(j1) + 1.80×tan(j2) 
+ 0.0332c1 + 0.0317c2; so, E{FS(tan(j1),tan(j2);c1,c2)} = 

1.77 and Var{FS(tan(j1),tan(j2);c1,c2)} = 0.0673.

The exact variance reduction factor gFS = 0.0673/0.1030 = 
0.65.

3)	 The simplified model of geometrical averaging [.]ga:  
reduction from two random fields (two random vectors) to 
two random variables.

Using the geometrical averaging, thus the random 
variable [tan(j)]ga which is calculated along AD, DC in 
section 9.2:

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑇𝑇𝑇𝑇stab
𝑇𝑇𝑇𝑇dst

=
𝐺𝐺𝐺𝐺1∙cos(𝛼𝛼𝛼𝛼)∙[tan(𝜑𝜑𝜑𝜑)]ga +(𝐺𝐺𝐺𝐺2+𝑄𝑄𝑄𝑄)∙cos(𝛼𝛼𝛼𝛼)∙[tan(𝜑𝜑𝜑𝜑)]ga+(𝐵𝐵𝐵𝐵1+𝐵𝐵𝐵𝐵2)∙[𝑐𝑐𝑐𝑐]ga

𝐺𝐺𝐺𝐺1∙sin(𝛼𝛼𝛼𝛼)+(𝐺𝐺𝐺𝐺2+𝑄𝑄𝑄𝑄)∙sin(𝛼𝛼𝛼𝛼)                     (20c) 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑇𝑇𝑇𝑇stab
𝑇𝑇𝑇𝑇dst

=
𝐺𝐺𝐺𝐺1∙cos(𝛼𝛼𝛼𝛼)∙[tan(𝜑𝜑𝜑𝜑)]ga +(𝐺𝐺𝐺𝐺2+𝑄𝑄𝑄𝑄)∙cos(𝛼𝛼𝛼𝛼)∙[tan(𝜑𝜑𝜑𝜑)]ga+(𝐵𝐵𝐵𝐵1+𝐵𝐵𝐵𝐵2)∙[𝑐𝑐𝑐𝑐]ga

𝐺𝐺𝐺𝐺1∙sin(𝛼𝛼𝛼𝛼)+(𝐺𝐺𝐺𝐺2+𝑄𝑄𝑄𝑄)∙sin(𝛼𝛼𝛼𝛼)                     (20c) 
(20c)

where [c]ga = [c]a = (L1c1 + L2c2)/(L1 + L2). 
In the considered case, FS = FS([tan(j)]ga;[c]ga) = 

1.15×tan(j1) + 1.10×tan(j2) + 0.0332×c1 + 0.0317×c2; so, 
E{FS([tan(j)]ga;[c]ga)} = 1.77 and Var{FS([tan(j)]ga;[c]ga)} = 
0.0543. 

The calculated variance reduction factor gFS = 
0.0543/0.1030 = 0.53 underestimates the exact result gFS = 
0.65.

4)	 The simplified model of stress-weighted 
averaging [.]sa: reduction from two random fields (two 
random vectors) to two random variables.

Using the stress-weighted averaging, thus the random 
variable [tan(j)]sa which is calculated along AD, DC in 
section 9.2: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑇𝑇𝑇𝑇stab
𝑇𝑇𝑇𝑇dst

= 𝐺𝐺𝐺𝐺1∙cos(𝛼𝛼𝛼𝛼)∙[tan(𝜑𝜑𝜑𝜑)]sa +(𝐺𝐺𝐺𝐺2+𝑄𝑄𝑄𝑄)∙cos(𝛼𝛼𝛼𝛼)∙[tan(𝜑𝜑𝜑𝜑)]sa+(𝐵𝐵𝐵𝐵1+𝐵𝐵𝐵𝐵2)∙[𝑐𝑐𝑐𝑐]sa
𝐺𝐺𝐺𝐺1∙sin(𝛼𝛼𝛼𝛼)+(𝐺𝐺𝐺𝐺2+𝑄𝑄𝑄𝑄)∙sin(𝛼𝛼𝛼𝛼)                     (20d) 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑇𝑇𝑇𝑇stab
𝑇𝑇𝑇𝑇dst

= 𝐺𝐺𝐺𝐺1∙cos(𝛼𝛼𝛼𝛼)∙[tan(𝜑𝜑𝜑𝜑)]sa +(𝐺𝐺𝐺𝐺2+𝑄𝑄𝑄𝑄)∙cos(𝛼𝛼𝛼𝛼)∙[tan(𝜑𝜑𝜑𝜑)]sa+(𝐵𝐵𝐵𝐵1+𝐵𝐵𝐵𝐵2)∙[𝑐𝑐𝑐𝑐]sa
𝐺𝐺𝐺𝐺1∙sin(𝛼𝛼𝛼𝛼)+(𝐺𝐺𝐺𝐺2+𝑄𝑄𝑄𝑄)∙sin(𝛼𝛼𝛼𝛼)                     (20d) 

(20d)

where [c]sa = [c]a = (L1c1 + L2c2)/(L1 + L2).
In the considered case, FS = FS([tan(j)]sa;[c]sa) = 

0.441×tan(j1) + 1.80×tan(j2) + 0.0332×c1 + 0.0317×c2; so, 
E{FS([tan(j)]sa;[c]sa)} = 1.77 and Var{FS([tan(j)]sa;[c]sa)} = 
0.0673.

The obtained variance reduction factor gFS = 
0.0673/0.1030 = 0.65 confirms the exact solution from 
previous reference case No. 2. No probabilistic information 
is lost during the stress-weighted averaging.

All the approaches are unbiased, that is, E{FS} = 
1.77 = const; the presented results reveal that the model 
of two random variables (ignoring spatial variability) 
overestimates the exact variance of 53% (0.103/0.0673 = 
1.53), the [.]ga model underestimates the exact variance 
of 20% (0.0543/0.0673 = 0.80) and the [.]sa model is exact 
(0.0673/0.0673 = 1). For weakly correlated random fields, 
especially for non-cohesive materials, the differences are 
more significant. 

Note that for n discrete elements, n > 2, and for local 
angles a1, …, an, the presented example of the wedge 
stability has a direct generalisation to the method of slices 
by Fellenius or Bishop. 
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10  Summary and conclusions
1)	 There exist three basic sources of subsoil randomness: 

the inherent randomness in situ (including meso- 
or  macro-inhomogeneity trends), measurement 
errors and possible (mis)interpretations or data 
transformation uncertainty; the paper focuses on 
a fourth factor - the field of stresses in a subsoil, 
which can amplify (or suppress) some spatial random 
fluctuations of subsoil parameters.

2)	 The basic statistical measures of subsoil parameters’ 
variability, that is, the coefficient of variation, auto- 
and crosscorrelation lengths (scales of fluctuations 
d), are reported in numerous papers, but the results 
are often divergent; this is caused by mostly unknown 
geological processes (sedimentation, overloading, 
3D consolidation, weathering), different particle 
morphology, water content, soil testing methodology, 
etc. Generally, there is a wide margin of uncertainty 
and only some trends or provisional intervals can 
be concluded from literature studies – until a local 
programme of subsoil investigations is implemented. 

3)	 For practical reasons, in the context of simple design 
situations, it is recommended to replace the vectorial 
random field (tan(j(x));c(x)) by an equivalent 
random vector consisting of spatially averaged values  
([tan(j)]a;[c]a).

4)	 If the strength parameters of the Coulomb material 
can be analysed as homogeneous random fields 
(tan(j(x));c(x)), then the spatial auto- and cross-
correlations r < 1 reduce the variance of the random 
shearing resistance T due to interactions between 
adjacent regions; the reduction effects are significant 
if the scale of fluctuations d (m) is short – in vertical 
direction most frequently.

5)	 As far as frictional materials are considered, the 
method of averaging proposed by E. Vanmarcke is 
controversial because it has no formalised background 
and the volume averaging is not representative; it 
overestimates the variance reduction effects, and 
hence, it overestimates the structural safety and can 
be dangerous in risk assessment. The same can be 
concluded for settlements and serviceability limit 
states.

6)	 The paper presents a rational alternative defined 
as the stress-weighted averaging, which is a more 
general approach; only for perfectly cohesive soils or 
uniform loadings, both methods coincide.

7)	 Several simple examples illustrate the proposed 
averaging procedures and reveal that the averaging 
is problem dependent; moreover, even for the same 

design situation, like in the example of wedge stability, 
the analyses are sensitive to basic deterministic 
parameters (sliding angle a and others).

8)	 The conclusions are true for a much wider class of 
design situations; for example, the standard Fellenius-
type slope stability analysis is a straightforward 
multidimensional generalisation of the presented 
numerical example (wedge stability), using the stress-
weighted averaging along cylindrical surfaces and 
local angles ai.
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