Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The paper describes the process of designing, manufacturing and design verification of the intervertebral of a new structure of lumbar disc endoprosthesis – INOP/LSP.1101. Methods: Modern and noninvasive medical imagining techniques, make it possible to record results of tests in a digital form, which creates opportunities for further processing. Mimics Innovation Suite software generates three-dimensional virtual models reflecting the real shape and measurements of components of L4-L5 spinal motion segment. With the use of 3D Print technique, physical models of bone structures of the mobile segment of the spine as well as the INOP/LSP.1101 endoprosthesis model were generated. A simplified FEA analysis of stresses in the endoprosthesis was performed to evaluate the designed geometries and materials of the new structure. Results: The endoprosthesis prototype was made of Co28Cr6Mo alloy with the use of selective laser technology. The prototypes were subject to tribological verification with the use of the SBT-03.1 spine simulator. Conclusions: The structure of the endoprosthesis ensures a full reflection of its kinematics, full range of mobility of the motion segment in all anatomical planes as well as restoration of a normal height of the intervertebral space and curvature of the lordosis. The results of the tribological tests confirmed that SLM technology has the potential for production of the human bone and jointendoprostheses.
Czasopismo
Rocznik
Tom
Strony
25--34
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
- Metal Forming Institute, Poznań, Poland
autor
- Warsaw University of Technology, Institute of Precision Mechanics, Warsaw, Poland
autor
- Metal Forming Institute, Poznań, Poland
Bibliografia
- [1] BERG S., TROPP H. T., LEIVSETH G., Disc height and motion patterns in the lumbar spine in patients operated with total disc replacement or fusion for discogenic back pain. Results from a randomized controlled trial, The Spine Journal, 2011, 11, 991–998.
- [2] BENZEL E.C., Spine surgery. Techniques, comlication avoidance, and menagment, 2nd ed., Vol. 2, Elsevier, Inc., Philadelphia, 2005.
- [3] BERG S., On total disc replacement, Acta Orthopedica Suplementum, 2011, 343 (83), 1–29.
- [4] BONO C.M., GARFIN S.R., History and evolution of disc replacement, The Spine Journal, 2004, 4, 145–150.
- [5] BORKOWSKI P., MAREK P., KRZESIŃSKI G., RYSZKOWSKA J., WAŚNIEWSKI J., WYMYSŁOWSKI P., ZAGRAJEK T., Finite element analysis of artificial disc with an elastomeric core in the lumbar spine, Acta Bioeng. Biomech., 2012, 14, 1, 59–67.
- [6] BORKOWSKI P., KĘDZIOR K., KRZESIŃSKI G., SKALSKI K., WYMYSŁOWSKI P., ZAGRAJEK P., Numerical investigation of a new type of artifical lumbar disc, J. Theor. Appl. Mech., 2004, 42, 2, 253–268.
- [7] CWANEK J., Przydatność parametrów struktury geometrii powierzchni do oceny stopnia zużycia sztucznych stawów biodrowych, Wyd. Uniwersytetu Rzeszowskiego, Rzeszów 2009.
- [8] DE BEER N., SCHEFFER C., Reducing subsidence risk by using rapid manufactured patient-specific intervertebral disc implants, The Spine Journal, 2012, 12, 11, 1060–1066.
- [9] DELAUNAY C., PETIT I., LEARMONTH I.D. OGER P., VENDITTOLI P.A., Metal-on-metal bearings total hip arthroplasty: The cobalt and chromium ions release concern, Orthopaedics & Traumatology, Surgery & Research, 2010, 96, 894–904.
- [10] DOMAŃSKI J., SKALSKI K., GRYGORUK R., MRÓZ A., Rapid Prototyping in the Intervertebral Implant Design Process, Rapid Prototyping J, 2014 (accepted to printing).
- [11] FISHER A., WEISS S., WIMMER M.A., The tribological difference between biomedical steels and CoCrMo-alloys, J. Mech. Behav. Biomed. Mater., 2012, 9, 50–62.
- [12] GEISLER F.H., The Charite artifical disc: design history, FDA IDE study results, and the surgical technique, Clin. Neurosurgery, 2006, 53, 223–228.
- [13] GIERZYŃSKA-DOLNA M., LIJEWSKI M., Badania właściwości tribologicznych biomateriałów i implantów, Obróbka Plastyczna Metali, 2012, 23, 3, 181–196.
- [14] GRUPP T.M., YUE J.J., GARCIA R., BASSON J., SCHWIESAU J., FRITZ B., BLÖMER W., Biotribological evaluation of artificial disc arthroplasty devices: influence of loading and kinematic patterns during in vitro wear simulation, Euro Spine Journal, 2009, 18 1, 98–108.
- [15] HARPER M.L., DOORIS A., PARÉ P.E., The fundamentals of biotribology and its application to spine arthroplasty, SAS Journal, 2009, 3, 125–132.
- [16] KULKARNI A.G., DIWAN A.D., Prosthetic Lumbar disc replacement for degenerative disc disease, Neurology India, 2005, 53 (4), 499–505.
- [17] LAU S., LAM K.S., (iv) Lumbar stabilisation techniques, Current Orthopaedics, 2007, 21, 25–39.
- [18] LEHUEC J.C., KIAER T., KRIESEM T., MATHEWS H., LIU M., EISERMANN L., Shock absorptionin lumbar disc prosthesis. A preliminary mechanical study, J. Spinal Disord. Tech., 2003, 16, 4, 346–351.
- [19] MARTIN M.D., BOXELL C.M., MALONE D.G., Pathophysiology of lumbar disc degeneration: a review of the literature, Neurosurg. Focus, 2002, 13, 1–6.
- [20] MOGHADAS P., MAHOMED A., HUKINS D., SHEPHERD D., Friction in metal-on-metal total disc arthroplasty: Effect of ball radius, J. Biomech., 2012, 45, 504–509.
- [21] MOOJEN W.A., ARTS M.P., BARTELS R.H., JACOBS W.C., PEUL W.C., Effectiveness of interspinous implant surgery in patients with intermittent neurogenic claudication: a systematic review and meta-analysis, Eur. Spine J., 2011, 20, 1596–1606.
- [22] NOWAKOWSKI A., CABAJ M., KUBASZEWSKI M., Endoprotezoplastyka krążka międzykręgowego w części lędźwiowej kręgosłupa – doświadczenia wstępne, Neuroortopedia, 2003, 1, 5, 58–61.
- [23] PEZOWICZ C., Analysis of selected mechanical properties of intevertebral disc annulus fibrosus in macro and micro scale, J. Theor. App. Mech., 2010, 48, 4, 917–932.
- [24] PIMENTA L., SPRINGMULLER R., LEE C.K., OLIVEIRA L., ROTH S.E., OGILVIE W.F., Clinical performance of an elastomeric lumbar disc replacement: Minimum 12 months follow-up, SAS Journal, 2010, 4, 16–25.
- [25] RASEKHI A., BABAAHMADI A., ASSADSANGABI R., SEYYED A., NABAVIZADEH, Clinical Manifestations and MRI Findings of Patients With Hydrated and Dehydrated Lumbar Disc Herniation, Acad. Radiol. 2006, 13, 1485–1489.
- [26] REYES-SANCHEZ A., MIRAMONTES V., ROSALES OLIVAREZ L.M., AQUIRRE A., ORTEGA QUIROZ A., ZARATE-KALFOPULOS B., Initial clinical experience with a next-generation artificial disc for the treatment of symptomatic degenerative cervical radiculopathy, SAS Journal, 2010, 4, 9–15.
- [27] RISCHKE B., ROSS R.S., JOLLENBECK B.A., ZIMMERS K.B., DEFIBAUGH N.D, Preclinical and clinical experience with a viscoelastic total disc replacement, SAS Journal, 2011, 5, 97–107.
- [28] ŁODYGOWSKI T., KĄKOL W., WIERSZYCKI M., OGURKOWSKA M., Three-dimensional nonlinear finite element model of the human lumbar spine segment, Acta Bioeng. Biomech., 2005, 7, 2, 17–28.
- [29] SUN D., WHARTON J.A., WOOD R.J.K., Microabrasion–corrosion of cast CoCrMo alloy in simulated body fluids, Wear, 2009, 267, 1845–1855.
- [30] TYNDYK M.A., BARRON V., MCHUGH P.E., MAHONEY D.O., Generation of finite element model of the thoracolumbar spine, Acta Bioeng. Biomech., 2007, 9, 1, 35–46.
- [31] URBAN J.P., ROBERTS S., Degeneration of the intervertebral disc, Arthritis Research & Therapy, 2003, 5, 3, 120–130.
- [32] VAN DE KELFT E., VERGUTS L., Clinical Outcome of Monosegmental Total Disc Replacement for Lumbar Disc Disease with Ball-and-Socket Prosthesis (Maverick): Prospective Study with Four-Year Follow-up, World Neurosurg., 2012, 78, 3, 4, 355–363.
- [33] WALCZYŃSKA-DRAGON K., BARON S., The biomechanical and functional relationship between temporomandibular dysfunction and cervical spine pain, Acta Bioeng. Biomech., 2011, 13(4), 93–98.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47396c42-df27-4072-9968-f974c8ea03d9