PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cybersecurity in autonomous means of transport

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: The growing integration of internet connectivity and electronic control systems in modern autonomous and connected vehicles necessitates continuous information exchange. While these advancements enhance vehicle performance, they also expose critical security vulnerabilities, posing significant cyber threats. Understanding and mitigating these risks is essential to ensure vehicle safety and resilience against cyberattacks. This article addresses the existing knowledge gap in identifying cybersecurity deficiencies within vehicle communication networks. It features a systematic review of the available literature on vehicle electrical and electronic systems, challenges in vehicle cybersecurity, and proposed security solutions. Methods: Theoretical methods such as analysis, synthesis, comparison, and generalization were used, alongside empirical techniques including observation and document examination, to assess various threats and solutions in vehicular communication systems. Results: The review revealed multiple vulnerabilities in common vehicle communication protocols, including CAN, LIN, FlexRay, and Automotive Ethernet, which are all susceptible to attacks such as denial of service (DoS), spoofing, and message manipulation. Case studies revealed a number of successful cyberattacks, such as the remote hijacking of a Chrysler Jeep and the manipulation of Tesla’s systems. Cybersecurity solutions that may mitigate these threats, including secure communication protocols, intrusion detection systems, and trusted authorities in VANETs, were explored. The increasing complexity and connectivity of autonomous and connected vehicles necessitate advanced cybersecurity measures to mitigate risks. Systematic threat analysis in vehicular communication systems is essential to improve vehicle safety. Conclusions: Further research should focus on optimizing security strategies, detecting emerging threats, and developing industry-wide standards to protect vehicles from cyberattacks as they become more integrated into digital networks.
Czasopismo
Rocznik
Strony
455--467
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • The Logistics Faculty, Faculty of Management and Leadership, General Tadeusz Kościuszko Military University of Land Forces, Wrocław, Poland
Bibliografia
  • 1. Al-Shareeda M. A., Manickam S., Laghari S. A., Jaisan A., 2024, Replay-Attack Detection and Prevention Mechanism in Industry 4.0 Landscape for Secure SECS/GEM Communications, Sustainability 14, no. 23: 15900. https://doi.org/10.3390/su142315900, access: 15.02.2024.
  • 2. Axelrod C. W., 2017, Cybersecurity in the age of autonomous vehicles, intelligent traffic controls and pervasive transportation networks, 2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT), Farmingdale, NY, USA, pp. 1-6, https://doi.org/10.1109/LISAT.2017.8001966
  • 3. Burakova Y., Hass B., Millar L., Weimerskirch A., Truck Hacking: An Experimental Analysis of the SAE J1939.
  • 4. Dini P, Elhanashi A, Begni A, Saponara S, Zheng Q, Gasmi K., 2023, Overview on Intrusion Detection Systems Design Exploiting Machine Learning for Networking Cybersecurity. Applied Sciences. 13(13):7507. https://doi.org/10.3390/app13137507
  • 5. Eidson J., Lee K., IEEE Standard No. 1588–2002. IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems. IEEE Standard No. 1588–2002; 2002; i–144, DOI: 10.1109/SFICON.2002.1159815, 2002, https://www.researchgate.net/publication/3996882_IEEE_Standard_No_1588-2002_IEEE_Standard_for_a_Precision_Clock_Synchronization_Protocol_for_Networked_Measurement_and_Control_Systems_IEEE_Standard_No_1588-2002_2002_i-144, access: 15.02.2024.
  • 6. El-Rewini Z., Sadatsharan K., Selvaraj D. F., Plathottam S. J., Ranganathan P., 2020, Cybersecurity challenges in vehicular communications, Vehicular Communications Volume 23, June 2020, https://www.sciencedirect.com/science/article/pii/S221420961930261X?via%3Dihub access: 22.12.2023.
  • 7. El-Rewini Z., Sadatsharan K., Selvaraj D. F., Plathottam S. J., Ranganathan P., 2020, Cybersecurity challenges in vehicular communications, Vehicular Communications, Volume 23, 2020, https://doi.org/10.1016/j.vehcom.2019.100214, access: 02.04.2024.
  • 8. Experimental Security Assessment of BMW Cars: A Summary Report, Technical Report, Keen Security Lab., 2018, https://keenlab.tencent.com/en/Experimental_Security_Assessment_of_BMW_Cars_by_KeenLab.pdf, access: 21.12.2023.
  • 9. He, T., Zhang, L., Kong, F., Salekin, A. (2020). Exploring inherent sensor redundancy for automotive anomaly detection. Proceedings of the 57th ACM/EDAC/IEEE Design Automation Conference (DAC '20), IEEE Press. https://doi.org/10.1109/DAC18072.2020, access: 21.12.2023.
  • 10. Greenberg A., 2016, A new wireless hack can unlock millions of Volkswagens, WIRED, https://www.wired.com/2016/08/oh-good-new-hack-can-unlock-100-million-volkswagens/ , access: 21.12.2023.
  • 11. Greenberg A., 2016, Tesla responds to Chinese hack with a major security upgrade, WIRED, https://www.wired.com/2016 /09 /tesla-responds-chinese-hack-majorsecurity-upgrade/, access: 21.12.2023.
  • 12. Halder S., Ghosal A., Conti M., 2020, Secure over-the-air software updates in connected vehicles: A survey, Computer Networks, Volume 178.
  • 13. Harris M., Serial Communications Protocols - CAN and LIN, https://resources.altium.com/p/serial-communications-protocols-can-and-lin, access: 22.12.2023.
  • 14. https://www.n-able.com/blog/what-are-vlans , access: 21.04.2024.
  • 15. https://www.plm.automation.siemens.com/global/en/our-story/glossary/what-is-automotive-ethernet/109722, access: 22.12.2023.
  • 16. https://www.yongatek.com/v2x-roadside-unit-rsu-and-on-board-unit-obu, access: 26.02.2024.
  • 17. Idrees Z., et al., IEEE 1588 for Clock Synchronization in Industrial IoT and Related Applications: A Review on Contributing Technologies, Protocols and Enhancement Methodologies, doi: 10.1109/ACCESS.2020.3013669, https://ieeexplore.ieee.org/abstract/document/9154372, access: 15.02.2024.
  • 18. IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems, IEEE Std 1588-2008 (Revision of IEEE Std 1588-2002) , vol., no., pp.1-269, 24 July 2008, doi: 10.1109/IEEESTD.2008.4579760, https://ieeexplore.ieee.org/document/4579760, access: 15.02.2024.
  • 19. International Journal of Control Theory and Applications, 2016, 9 (18), pp.8883-8888, https://hal.science/hal-01496806/document, access: 22.12.2023.
  • 20. Jadoon A. K., Wang L., Li T., Azam Zia M., 2018, Lightweight Cryptographic Techniques for Automotive Cybersecurity, Wireless Communications and Mobile Computing, vol. 2018, https://doi.org/10.1155/2018/1640167, access: 22.12.2023.
  • 21. Javeed D., MohammedBadamasi U., Man in the Middle Attacks: Analysis, Motivation and Prevention, International Journal of Computer Networks and Communications Security, https://doi.org/10.47277/IJCNCS/8(7)1, https://www.researchgate.net/publication/347006863_Man_in_the_Middle_Attacks_Analysis_Motivation_and_Prevention, access: 15.02.2024.
  • 22. Kim S., Shrestha R., 2020, Automotive Cyber Security: Introduction, Challenges, and Standardization.
  • 23. Knight C., What are connected autonomous vehicles?, European Investment Bank, https://www.eib.org/en/stories/connected-electric-vehicles, access: 28.12.2023.
  • 24. Lu Z., Qu G. and Liu Z., 2019, A Survey on Recent Advances in Vehicular Network Security, Trust, and Privacy, in IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 2, pp. 760-776, Feb. 2019, https://doi.org/10.1109/TITS.2018.2818888
  • 25. McCandless D., Million lines of code — information is beautiful, https://informationisbeautiful.net/visualizations/million-lines-of-code/, access: 20.12.2023.
  • 26. Michigan Technological University, https://www.mtu.edu/it/security/information-security-plan/4-definitions/, access: 02.04.2024.
  • 27. Nasser A., Automotive Cybersecurity Engineering Handbook: The automotive engneer’s roadmap to cyber-resilient vehicles, Packt Publishing, 2023.
  • 28. National Institute of Standards and Technology, https://csrc.nist.gov/glossary/term/integrity, access: 02.04.2024.
  • 29. National Institute of Standards and Technology, https://csrc.nist.gov/glossary/term/availability, access: 02.04.2024.
  • 30. Networks, International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, Pages 185–206 of. Springer; 2017.
  • 31. NHTSA, Cybersecurity protection methods, https://www.nhtsa.gov/technology-innovation/vehicle-cybersecurity, access: 28.12.2023.
  • 32. Nie S., Liu L., Du Y., Free-Fall: Hacking Tesla From Wireless to CAN BUS, Keen Security Lab of Tencent, free-fall-hacking-tesla-from-wireless-to-can-bus (blackhat.com), access: 08.05.2024.
  • 33. Federal Motor Vehicle Safety Standards; Tire Pressure Monitoring Systems; Controls and Displays, DEPARTMENT OF TRANSPORTATION, National Highway Traffic Safety Administration, https://www.nhtsa.gov/sites/nhtsa.gov/files/fmvss/TPMSfinalrule.pdf, access: 10.04.2024.
  • 34. Palanca A., Evenchick E., Maggi F., Zanero S., A stealth, selective, link-layer denial-of-service attack against automotive.
  • 35. Rashid, F. Y. (2023). Hacker history: the time Charlie and Chris hacked a Jeep Cherokee. Duo Decipher. https://duo.com/decipher/hacker-history-time-charlie-chris-hacked-jeep-cherokee, access: 20.12.2023.
  • 36. Rouf I., Miller R., Mustafa H., Taylor T., Oh S., Xu W., Gruteser M., Trappe W., Seskar Ivan, Security and Privacy Vulnerabilities of In-Car Wireless Networks: A Tire Pressure Monitoring System Case Study.
  • 37. Standard, The University of Michigan, woot16-paper-burakova.pdf (usenix.org), access: 08.05.2024.
  • 38. Takahashi J. et al., Automotive Attacks and Countermeasures on LIN-Bus, Journal of Information Processing, Vol. 25, p. 220-228, 2016.
  • 39. TE CONNECTIVITY, 6 Key Connectivity Requirements of Autonomous Driving, https://spectrum.ieee.org/6-key-connectivity-requirements-of-autonomous-driving, access: 28.12.2023.
  • 40. Tianjia He, Lin Zhang, Fanxin Kong, and Asif Salekin. 2020. Exploring inherent sensor redundancy for automotive anomaly detection. In Proceedings of the 57th ACM/EDAC/IEEE Design Automation Conference (DAC '20). IEEE Press, Article 78, 1–6.
  • 41. Tomar R., Prateek M., Sastry G. H., Vehicular Adhoc Network (VANET) - An Introduction,
  • 42. Zhang L., Research on Security and Privacy in Vehicular Ad Hoc Networks, Ph.D. thesis, Universitat Rovira I Virgili, 2010, www.tesisenxarxa.net, access: 02.04.2024.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4738b328-c2ee-4e2f-a195-9d60d717ff84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.