PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A study of the effect of operating parameters in column flotation using experimental design

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of air flow rate, pulp density and particle size was studied using central composite design for coal samples from the Lazy mine. Evaluation of column flotation tests was based on two dependant variables such as ash content and combustible matter recovery in the concentrate. The ash content in the concentrate was from 4.61 to 9.62% with the recovery of combustible matter from 17.43 to 81.98%. The ANOVA statistical analysis showed that the main effect of air flow rate has a significant impact on the combustible matter recovery and ash content in the concentrate. The main effect of pulp density on the combustible matter recovery is significant, whereas for the ash content it is not seen. There is a strong effect of the particle size on the ash content and combustible matter recovery in the concentrate. The interaction of the effect of the pulp density and particle size has a significant impact on the ash content in the concentrate.
Rocznik
Strony
523--535
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering, Pierottijeva 6, Zagreb, Croatia
Bibliografia
  • ABKHOSHK E., KOR M., REZAI B., 2010, A study on the effect of particle size on coal flotation kinetics using fuzzy logic, Expert Systems with Applications, 37, 5201-5207.
  • AKDEMIR U., SONMEZ I., 2003, Investigation of coal and ash recovery and entertainment in flotation, Fuel Processing Technology, 82, 1-9.
  • ALBIJANIC B., OZDEMIR O., NGUYEN A. V., BRADSHAW D., 2010, A review of induction and attachment times of wetting thin films between air bubbles and particles and its relevance in the separation of particles by flotation, Advances in Colloid and Interface Science, 159, 1-21.
  • BAYRAK N., O'DONNELL J.A., TOROGLU I., 2002, Recovery of Fine Coal by Column Flotation, Proceedings of the 9th APCChE, www.cape.canterbury.ac.nz/Apcche_Proceedings/APCChE/Data/ 918rev.pdf
  • BEDEKOVIC G., FECKO P., RIEDLOVA S., 2003. Testing of coal floatability from mine Lazy, Proceedings of the 7th Conference on Environment and Mineral Processing, 397-402.
  • BOX G.E.P., HUNTER W.G., HUNTER J.S., 1978. Statistics for Experiments. Wiley, New York.
  • BROZEK M., MLYNARCZYKOWSKA A., 2013, An analysis of effect of particle size on batch flotation of coal, Physicochemical Problems of Mineral Processing, 49, 341-356.
  • CILEK E.C., YILMAZER B.Z., 2003, Effects of hydrodynamic parameters on entrainment and flotation performance, Minerals Engineering, Vol. 16, No. 8, pp. 745-756.
  • DRZYMALA J., 2006, Atlas of upgrading curves used in separation and mineral science and technology Part I , Physico-chemical Problems in Mineral Processing, 40, 19–2.
  • DRZYMALA J., KOWALCZUK P.B., OTENG-PEPRAH M., FOSZCZ D., MUSZER A., HENC T., LUSZCZKIEWICZ A., 2013, Application of the grade-recovery curve in the batch flotation of Polish copper ore. Miner. Eng. 49, 17–23.
  • FENG D., ALDRICH C., 1999, Effect of particle size on flotation performance of complex sulphide ores, Minerals Engineering, 12, 721-731.
  • FINCH J. A., DOBBY G. S., 1990. Column Flotation. Pergamon Press.
  • FUJIMOTO H., MATSUKATA M., UEYAMA K., 1999, Behaviour of coal particles in column flotation, Journal of Chemical Engineering of Japan, Vol. 32, No. 3, pp. 322-327.
  • GOODAL C.M., O’CONNOR C.T., 2003, Pulp-froth interactions in a laboratory column flotation cell, Minerals Engineering, 4, 951-958.
  • HERNAINZ F., CALERO M., 2001, Froth flotation: kinetic models based on chemical analogy, Chemical Engineering and Processing, 40, 269-275.
  • HONAKER, R.Q., MOHANTY, M.K., CRELLING, J.C., 1995, Coal maceral separation using column flotation, Minerals Engineering, 9, 449-464.
  • HONAKER R.Q., MOHANTY M.K., 1996, Enhanced column flotation performance for fine coal cleaning, Minerals Engineering, 9, 931-945.
  • HUMERES E., DEBACHER N. A., 2002, Kinetics and mechanism of coal flotation, Colloid Polymer Science 280, 365-371.
  • KAYLANI V.K., PALLAVIKA, CHARAN GOURI T., CHAUDHURI S., 2005, Optimization of a Laboratory-Scale Froth Flotation Process Using Response Surface Methodology, International Journal of Coal Preparation and utilization, 25, 141-153.
  • KOWALCZUK P.B., SAHBAZ O., DRZYMALA J., 2011, Maximum size of floating particles in different flotation cells, Minerals Engineering, 24, 766-771.
  • LI Y., ZHAO W., GUI X., ZHANG X., 2013, Flotation kinetics and separation selectivity of coal size fractions, Physicochemical Problems of Mineral Processing, 49, 387-395.
  • MOHANTY M. K., HONAKER R. Q., 1998, A comparative evaluation of the leading advanced flotation technologies, Minerals Engineering, 12, 1, 1-13.
  • PEREZ GARIBAY, R., GALLEGOS A.P.M., URIBE S. A., NAVA A., 2002, Effect of collection zone height and operating variables on recovery of overload flotation columns, Minerals Engineering, 15, 325-331.
  • POLAT M., POLAT H., CHANDER S., 2003, Physical and chemical interactions in coal flotation, International Journal of Mineral Processing, 72, 199-213.
  • RALSTON J., FORNASIERO D., HAYES R., 1999, Bubble-particle attachment and detachment in flotation, International Journal of Mineral Processing, 56, 133-164.
  • RAHMAN R.M., ATA S., JAMESON G.J., 2012, The effect of flotation variables on the recovery of different particle size fractions in the froth and the pulp, International Journal of Mineral Processing, 106-109, 70-77.
  • SAHBAZ O., 2013, Determining optimal conditions for lignite flotation by design of experiments and the Halbich upgrading curve, Physicochemical Problems of Mineral Processing, 49, 535-546.
  • SHAHBAZI B., REZAI B., JAVAD KOLEINI, S.M., 2010, Bubble-particle collision and attachment probability on fine coal flotation, Chemical Engineering and Processing, 49, 622-627.
  • SHEAN B.J., CILLIERS J.J., 2011, A review of froth flotation control, International Journal of Mineral Processing, 100, 57-71.
  • TAO D., LUTTRELL G.H., YOON R.-H., 2000, A parametric study and its effect on column flotation of fine particles, International Journal of Mineral Processing, 59, 25-43.
  • UCURUM M., BAYAT O., 2007, Effects of operating variables on modified flotation parameters in the mineral separation, Separation and Purification Technology, 55 173–181.
  • URIBE-SALAS A., PEREZ-GARIBAY F., NAVA-ALONSO F., 2007, Operating parameters that affect the carrying capacity of column flotation of a zinc sulphide mineral, Minerals Engineering, 20, 710-715.
  • VAPUR H., BAYAT O., UCURUM M., 2010, Coal flotation optimization using modified flotation parameters and combustible recovery in a Jameson cell, Energy Conversion and Management, 51, 1891-1897.
  • WATANABE M., KOWALCZUK P.B., DRZYMALA J., 2011, Analytical solution of equation relating maximum size of floating particles and its hydrophobicity, Physicochemical Problems of Mineral Processing, 46, 13-20.
  • YE Y., KHANDRIKA S., MILLER J., 1989, Induction-time measurements at a particle bed, International Journal of Mineral Processing, 25, 221-240.
  • YOON R., YORDAN J., 1991, Induction time measurements for the quartz-amine flotation system, Journal of Colloid and Interface Science, 141, 374-383.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4731bc7f-738d-4139-9ba2-c25f39e44836
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.