PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Surface Hydrophobization on the Durability of Concrete with Cement Kiln Dust

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The examinations of concrete involved partial substitution of cement with Cement Kiln Dust (CKD - 0, 5, 10, 20 and 30%). The water/cement (w/c) ratio amounted to 0.36. The obtained findings pertaining to open porosity, density, and volumetric density were found to correlate with the capillary action and absorptivity of the analyzed types of concrete. With the maximum addition of CKD, i.e. 30%, open porosity decreased by 35%. In turn, CKD added in the amount of 5% resulted in a slightly reduced addition compressive strength, amounting to 1.3% and 2.1% following 28 days and 56 days of concrete curing, respectively. After 28 days, the differences in strength were greater when the additive was supplied in higher amounts, i.e. 10%, 20%, and 30%, resulting in 6.5%, 13.4%, and 22.9% decrease, respectively, in spite of strength improvement. In terms of flexural and splitting tensile strengths, comparable relations were noted. As far as the frost resistance test results are concerned, the mass losses in all examined concretes were not significant, reaching up to 0.5%. The strength reduction in the case of the first three series of concretes was below 3%. When the CKD addition was increased to 20% and 30%, the value of the dynamic modulus of elasticity Ec,s decreased to a greater degree, by 8.0% and 14.7%, respectively. The hydrophobization effect is best seen in CKD-free concrete. After the impregnation, the loss of mass following the frost test of the samples is reduced by half. With a higher CKD content, the hydrophobization effectiveness is insignificant. The most favourable results were observed for hydrophobization with the oligomer-based preparation A1.
Twórcy
  • Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40 , 20‒618 Lublin, Poland
  • Faculty of Technical Science, John Paul II University in Biala Podlaska, Sidorska 95/97, 21‒500 Biała Podlaska, Poland
autor
  • PGE EC S.A. Department of Heat and Power Plant in Lublin Wrotków, Inżynierska 4, 20-484 Lublin, Poland
  • Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20‒618 Lublin, Poland
Bibliografia
  • 1. U.S. Geological Survey. Cement Statistics and Information. National Minerals Information Center, https://www.usgs.gov/centers/national-minerals-information-center/ cement-statistics-and-information.
  • 2. Pavlík Z., Pavlíková M., Záleská M., Łagód G., Suchorab Z., Guz L. Life cycle assessment of the use of sewage sludge as Portland cement replacement. IOP Conf. Series: Materials Science and Engineering. 2019; 710: 012038, https:// doi. org/10.1088/1757-899X/710/1/012038
  • 3. Miller S.A., Habert G., Myers R.J., Harvey J.T. Achieving net zero greenhouse gas emissions in the cement industry via value chain mitigation strategies. One Earth. 2021; 4: 1398–1411, https://doi. org/10.1016/j.oneear.2021.09.011.
  • 4. Polish Committee for Standardization. PN-EN 197- 1:2012 Cement - Part 1: Composition, specifications and conformity criteria for common cements (In Polish); PKN: Warsaw, Poland, 2012.
  • 5. Giergiczny Z. Fly ash and slag. Cem. Concr. Res. 2019; 124: 105826, https://doi.org/10.1016/j. cemconres.2019.105826
  • 6. Merglová A., Záleská M., Pavlíková M., Łagod G., Pavlík Z. Evaluation of the suitability of using fly ash from coal combustion containing heavy metals in cement-based composites. AIP Conf. Proc. 2024; 3126: 020014, https://doi.org/10.1063/5.0197814
  • 7. Barnat-Hunek D., Grzegorczyk-Frańczak M., Klimek B., Pavlíková M., Pavlik Z., Properties of multi-layer renders with fly ash and boiler slag admixtures for salt-laden masonry. Constr Build Mater. 2021; 278(3): 122366, https://doi.org/10.1016/j. conbuildmat.2021.122366
  • 8. EPA 1993. United States Environmental Protection Agency: Report to Congress on Cement Kiln Dust (Report:EPA/530-R-94-001), https://nepis. epa.gov/Exe/ZyPDF.cgi?Dockey=9100LC0V. PDF (accessed on 20 May 2022).
  • 9. Pavia S., Regan C.D. Influence of cement kiln dust on the physical properties of calcium lime mortars. Mater. Struct. 2010; 43: 381–391, https://doi. org/10.1617/s11527-009-9496-9
  • 10. Bożym M. Alternatywne metody wykorzystania pyłów z pieców wapienniczych i cementowych, ze szczególnym uwzględnieniem gospodarki osadowej. Prace Instytutu Ceramiki i Materiałów Budowlanych 2011; 8: 59–68.
  • 11. Siddique R. Utilization of cement kiln dust (CKD) in cement mortar and concrete – an overview. Resources, Conservation and Recycling 2006; 48: 315–338, https://doi.org/10.1016/j.resconrec.2006.03.010
  • 12. Adaska W.S., Taubert D.H. Beneficial uses of Cement Kiln Dust. In: IEEE/PCA 50th Cement Industry Technical Conference, Miami, USA 2008; 19–22, https://doi.org/ 10.1109/CITCON.2008.24
  • 13. Mackie A., Boilard S., Walsh M.E., Lake C.B. Physicochemical characterization of cement kiln dust for potential reuse in acidic wastewater treatment. J. Hazard. Mater. 2010; 173: 283–291, https:// doi.org/10.1016/j.jhazmat.2009.08.081
  • 14. Miller G.A.U., Azad S. Influence of soil type on stabilization with cement kiln dust. Constr. Build. Mater. 2000; 14: 89–97, https://doi.org/10.1016/ S0950-0618(00)00007-6
  • 15. Sreekrishnavilasam A., Rahardja S., Kmetz R., Santagata M. Soil treatment using fresh and landfilled cement kiln dust. Constr Build Ma-ter. 2007; 21: 318–327, https://doi.org/10.1016/j.conbuildmat.2005.08.015
  • 16. Sulaymon A.H., Faisal A.A.H., Khaliefa Q.M. Cement kiln dust (CKD)-filter sand permeable reactive barrier for the removal of Cu(II) and Zn(II) from simulated acidic Cement kiln dust from groundwater. J. Hazard. Mater. 2015; 297: 160172, https://doi. org/10.1016/j.jhazmat.2015.04.061
  • 17. Al-Meshragi, H.G., Ibrahim M.M. Equilibrium and kinetics of chromium adsorption on cement kiln dust. In: Proceedings of the World Congress on Engineering and Computer Science, WCECS, San Francisco, USA 2008.
  • 18. Salem W.M., Sayed W.F., Halawy S.A., Elamary R.B. Physicochemical and microbiological characterization of cement kiln dust for potential reuse in wastewater treatment. Ecotoxicol. Environ. Saf. 2015; 119: 155–161, https://doi.org/10.1016/ j.ecoenv.2015.05.012
  • 19. Waly T.A., Dakroury A.M., El-Sayed G.O., El-Salam S.A., Assessment removal of heavy metals ions from wastewater by cement kiln dust (CKD). J. Am. Sci. 2010; 6(12): 910–917.
  • 20. Preston M.L. Use of cement kiln dust as an agricultural lime and fertilizer, Emerging Technologies Symposium on Cement and Concrete in the Global Environment, Chicago, PCA’s Cement Technical Support Library DVD020.01.2005, Portland Cement Association, Skokie, Illinois 1993; 10–11.
  • 21. Safari E., Ansari M. Ghazban, F. Preliminary assessment of cement kiln dust in solidification and stabilization of mercury containing waste from a chlor-alkaliunit. J Mater Cycles Waste Manag. 2017; 19: 406– 412, https://doi.org/10.1007/s10163-015-0437-0
  • 22. Sultan A., Mohamed F.A. Expansive soil remediation using cement kiln dust as stabilizer. Case Studies in Constr. Mater. 2023; 18: e01983, https://doi. org/10.1016/j.cscm.2023.e01983
  • 23. Aggarwal J., Goyal S., Kumar Maneek. Sustainable utilization of industrial by-products spent foundry sand and cement kiln dust in controlled low strength materials (CLSM). Constr Build. Mater. 2023; 404: 133315, https://doi.org/10.1016/j. conbuildmat.2023.133315
  • 24. El-Sayed A.M., Faheim A.A., Salman A.A., Saleh H.M. Sustainable Lightweight Concrete Made of Cement Kiln Dust and Liquefied Polystyrene Foam Improved with Other Waste Additives. Sustainability 2022; 14: 15313, https://doi.org/10.3390/su142215313
  • 25. Juela D.M. Promising adsorptive materials derived from agricultural and industrial wastes for antibiotic removal: A comprehensive review Sep. Purif. Technol. 2022, 284: 120286, 10.1016/j.seppur.2021.120286
  • 26. Li C., Huangfu L., Li J., Gao S., Xu G., Yu J. Recent advances in catalytic filters for integrated removal of dust and NOx from flue gas: fundamentals and applications Resour. Chem. Mater. 2022; 10.1016/j. recm.2022.06.002
  • 27. Song J., Huang G., Han D., Hou Q., Gan L., Zhang M. A review of reactive media within permeable reactive barriers for the removal of heavy metal(loid) s in groundwater: Current status and future prospects J. Clean. Prod. 2021; 319: 128644, 10.1016/j. jclepro.2021.128644
  • 28. Yaseri S., Masoomi Verki V., Mahdikhani M. Utilization of high volume cement kiln dust and rice husk ash in the production of sustainable geopolymer J. Clean. Prod. 2019: 230: 592–602, 10.1016/j. jclepro.2019.05.056
  • 29. Sadek, D.M., El-Attar M.M., Ali A.M. Physico-mechanical and durability characteristics of concreto paving blocks incorporating cement kiln dust. Constr Build Mater. 2017; 157: 300–312, https://doi. org/10.1016/j.conbuildmat.2017.09.107
  • 30. Amin M.S., Heikal M., Negm H.H., Abu-Dief A.M., Mohamed O.A. Manufacture of eco-friendly cementitious building materials of high performance from Egyptian industrial solid wastes. Constr Build Mater. 2023; 406: 133446, https://doi.org/10.1016/j. conbuildmat.2023.133446
  • 31. Siddique R., Kunal, Mehta A. Utilization of industrial by-products and natural ashes in mortar and concrete: development of sustainable construction materials. In: Harries, K., Sharma, B. (Eds.), Nonconventional and Vernacular Construction Materials, Characterisation, Properties and Applications. Elsevier, Wood-head Publishing, Cambridge 2020; 247–303, https:// doi.org/10.1016/B978-0-08-102704-2.00011-1
  • 32. Abdelgader H.S., Amran M., Kurpińska M., Mos aberpanah M.A., Murali G., Fediuk R., Sustainable Concrete Made with Ashes and Dust from Different Sources Materials, Properties and Applications Woodhead Publishing Series in Civil and Structural Engineering 2022; 451–479, https:// doi.org/10.1016/B978-0-12-824050-2.00003-6
  • 33. El-Sayed H.A., Gabr N.A., Hanafi S., Mohran M.A. Reutilization of by-pass kiln dust in cement manufacture. In: Proceedings of the International Conference on Blended Cement in Construction. 1991. Sheffield, UK.
  • 34. Al-Harthy A.S., Taha R., Al-Maamary F. Effect of cement kiln dust (CKD) on mortar and concrete mixtures. Constr Build Mater. 2003; 17(5): 353–360, https://doi.org/10.1016/S0950-0618(02)00120-4
  • 35. Maslehuddin M., Al-Amoudi O.S.B., Rahman M.K., Ali M.R., Barry M.S. Properties of cement kiln dust concrete. Constr. Build. Mater. 2009; 23: 2357–2361, https://doi.org/10.1016/j.conbuildmat.2008.11.002
  • 36. Shoaib M.M., Balaha, M.M., Abdel-Rahman, A.G. Influence of cement kiln dust substitution on the mechanical properties of concrete. Cem. Conc. Res. 2000; 30(3): 371–377.
  • 37. Sadique M., Coakley E. The influence of physicochemical properties of fly ash and CKD on strength generation of high-volume fly ash concrete. Adv. Cem. Res. 2016; 28(9): 595–605, https://doi. org/10.1680/JADCR.15.00103
  • 38. Abdelgader H.S., Kurpińska M., Amran M. Effect of slag coal ash and foamed glass on the mechanical properties of two-stage concrete. Materials Today-Proceedings 2022; 58(4): 1091–1097, https://doi. org/10.1016/j.matpr.2022.01.139
  • 39. European Committee for Standardization. EN 12390‒3:2019. Testing hardened concrete – Part 3: Compressive strength of test specimens; CEN: Brussels 2019.
  • 40. European Committee for Standardization. EN 12390‒5:2019. Testing hardened concrete – Part 5: Flexural strength of test specimens; CEN: Brussels 2019.
  • 41. British Standards. BS EN 12390‒6:2023. Testing hardened concrete - Part 6: Tensile splitting strength of test specimens, London, United Kingdom 2023.
  • 42. British Committee for Standardization. BS EN 1936:2006. Natural stone test methods – Determination of real density and apparent density and of total and open porosity. BS: London, 2006.
  • 43. European Committee for Standardization. EN 12390‒7:2019. Testing hardened concrete - Part 7: Density of hardened concrete; CEN: Brussels 2019.
  • 44. Polish Committee for Standardization. PN- B/06250:1988. Ordinary concrete (In Polish); PKN: Warsaw, Poland 1988.
  • 45. European Committee for Standardization. EN 1015- 18:2002. Methods of test for mortar for masonry - Part 18: Determination of water absorption coef- ficient due to capillary action of hardened mortar; CEN: Brussels 2019.
  • 46. European Committee for Standardization. EN 12390-13:2013. Testing hardened concrete – Part 13: Determination of secant modulus of elasticity in compression; CEN: Brussels 2019.
  • 47. American Committee for Standardization. C666 Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing; ASTM: USA 2015.
  • 48. American Committee for Standardization ASTM C215 Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Resonant Frequencies of Concrete Specimens; ASTM: USA 2019.
  • 49. Polish Committee for Standardization. PN-EN 12370:2001. Natural stone test methods - Determination of resistance to salt crystallisation; PKN: Warsaw, Poland, 2001.
  • 50. Najim K.B., Mahmod Z.S., Atea A.K.M.. Experimen- tal investigation on using Cement Kiln Dust (CKD) as a cement replacement material in producing modified cement mortar. Constr. Build. Mater. 2014; 55: 5–12, https://doi.org/10.1016/j.conbuildmat.2014.01.015 51. Lea F.M. The chemistry of cement and concrete. London: Edward Arnold Ltd 1983.
  • 52. El-Aleem S.A., Abd-El-Aziz M.A., Heikal M., Didamony H El. Effect of cement kiln dust on chemical and physical properties and compressive strength of Portland and slag cement. Arab J Sci Eng 2005; 30(2B): 263–63.
  • 53. Mohammad A.M., Hilal N. Re-using The By- product of Cement Industry (Cement Kiln Dust) To Produce the Concrete. Anbar J. Eng. Sci. 2010; 3: 1–14, https://www.iasj.net/iasj/download/ a22646580df16d01
  • 54. Ramakrishnan V., Balaguru, P. Durability of Concrete Containing Cement Kiln Dust. ACI Special Publication (SP–100) 1987; 100: 305e321.
  • 55. Wang M.L., Ramakrishnan V., Evaluation of blended cement, mortar and concrete made from type III cement and kiln dust. Constr Build Mater. 1990; 4(2): 78e85, https://doi.org/10.1016/0950-0618(90)90005-L
  • 56. Neville A.M. Properties of Concrete. Essex: Prentice Hall 1995; 844.
  • 57. Lin H., Takasu K., Suyama H., Koyamada H., Liu S. A study on properties, static and dynamic elastic modulus of recycled concrete under the influence of modified fly ash. Constr Build Mater. 2022; 347, 128585, https://doi.org/10.1016/j.conbuildmat.2022.128585.
  • 58. Najim K.B., Al.-Jumaily I., Atea A.M. Characterization of sustainable high performance/self-compacting concrete produced using CKD as a cement replacement material. Construction and Building Materials 2016; 103: 123–129.
  • 59. Grabowska K., Koniorczyk M. Internal hydrophobization of cement mortar by addition of siloxanes. MATEC Web of Conferences, 4th Central European Symposium on Building Physics (CESBP 2019) 2019; 282: 02030, https://doi. org/10.1051/matecconf/201928202030
  • 60. Al-Rezaiqi J., Alnuaimi A., Hago A.W. Efficiency factors of burnt clay and cement kiln dust and their effects on properties of blended concrete. Appl. Clay Sci. 2018; 157: 51e64, https://doi.org/10.1016/j. clay.2018.01.040
  • 61. Barnat-Hunek D., Grzegorczyk-Frańczak M., Suchorab Z. Surface hydrophobisation of mortars with waste aggregate by nanopolymer trietoxi-iso-butyl-silane and methyl silicon resin. Constr Build. Mater. 2020; 264: 120175, https://doi.org/10.1016/j. conbuildmat.2020.120175
  • 62. Sabatini V., Pargoletti E., Longoni M., Ortenzi M.A., Cappelletti G. Stearyl methacrylate co-polymers: Towards new polymer coatings for mortars protec- tion. Appl. Surf. Sci. 2019; 488: 213–220, https:// doi.org/10.1016/j.apsusc.2019.05.097
  • 63. Sarbak Z. Adsorpcja i adsorbenty. Teoria i zastosowanie. Wydawnictwo Naukowe Poznań 2000.
  • 64. Słomka-Słupik B. Siarczanowa korozja betonu stosowanego do budowy osadników oczyszczalni ścieków po mokrym odsiarczaniu spalin. Część I – stan wiedzy Sulfate corrosion of concrete designed to wastewater settlers after wet flue gas desulfurization (WFGD) in- stallation. Part I – The state of knowledge. Ochrona przed Korozją 2017; 60: 10–12.
  • 65. Barnat-Hunek D., Góra J., Widomski M.K. Durability of Hydrophobic/Icephobic Coatings in Protection of Lightweight Concrete with Waste Aggregate. Materials 2021; 14: 101. https://doi.org/10.3390/ ma14010101
  • 66. Szafraniec M., Barnat-Hunek D., Grzegorczyk- Frańczak M., Trochonowicz M. Surface Modification of Lightweight Mortars by Nanopolymers to Improve Their Water-Repellency and Durability Materials 2020; 13(6): 1350, https://doi. org/10.3390/ma13061350
  • 67. Batis G., Katsiamboulas A., Meletiou C.A., Chaniotakis E. In: Dhir, R.K., Dyer, T.D. (Eds.), Durability of Reinforced Concrete Made with Composite Cement Containing Cement Kiln Dust. Concrete for Environment Enhancement and Protection: Proceedings of the International Conference, Concrete in the Service of Mankind. University of Dundee, Dundee, United Kingdom 1996; 67e72.
  • 68. Kaliyavaradhan S.K., Ling T.C., Mo K.H. Valorization of waste powders from cement-concrete life cycle: A pathway to circular future. J. Clean. Prod., 2020; 122358, https://doi.org/10.1016/j. jclepro.2020.122358
  • 69. Palou M.T., Bagel L., Zivica, V., Kuliffayova M., Kozankova J. Influence of hydrothermal curing regimes on the hydration of fiber-reinforced cement composites. J. Therm. Anal. Calorim. 2013; 113: 219–229, doi:10.1007/s10973-013-2943-4
  • 70. Jurowski K., Grzeszczyk S. Wpływ wybranych czynników na zależność między dynamicznym modułem sprężystości a wytrzymałością betonu na ściskanie. Materiały 2018; 11: 477, https://doi. org/10.3390/ma11040477
  • 71. Zhou Y., Gao J., Sun Z., Qu W. A fundamental study on compressive strength, static and dynamic elastic moduli of young concrete. Constr. Build. Mater. 2015; 98: 137–145, https://doi. org/10.1016/j.conbuildmat.2015.08.110
  • 72. Plachy T., Padevet P., Polak M. Comparison of Two Experimental Techniques for Determination of Young’s Modulus of Concrete Specimens. In Proceedings of the 5th WSEAS International Conference on Applied and Theoretical Mechanics (MECHANICS ’09), Puerto De La Cruz, Spain 2009; 14–16, 68–71.
  • 73. Shkolnik I.E. Effect of nonlinear response of concrete on its elastic modulus and strength. Cem. Concr. Compos. 2005; 27, 747–757, https://doi. org/10.1016/j.cemconcomp.2004.12.006
  • 74. Lee B.J., Kee S.H., Och T., Kim Y.Y. Effect of cylinder size on the modulus of elasticity and compressive strength of concrete from static and dynamic tests. Adv. Mater. Sci. Eng. 2015; 580638, https:// doi.org/0.1155/2015/580638
  • 75. Salman M.M.; Al-Amawee A.H. The Ratio between Static and Dynamic Modulus of Elasticity in Normal and High Strength Concrete. J. Eng. Dev. 2006; 10: 163–174.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47313ae5-2adc-4164-9402-e4e48375132f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.