PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An analytical method for the adaptive computation of threshold of gradient modulus in 2D anisotropic diffusion filter

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In spite of the extensive application of Anisotropic Diffusion (AD) filter in software packages for medical image analysis, denoising and edge preservation offered by it depends exclusively on the selection of the value of Threshold of Gradient Modulus (TGM). Tuning the TGM to its optimum value through trial and error is subjective and tiring. An analytical model to compute the optimum value of TGM adaptively from the mean gradient of the image itself is proposed in this article. The qualitative examination of the gradient and true edge maps of the original and restored Magnetic Resonance images revealed that analytically computed TGM ensures best trade-off between noise suppression and edge preservation.
Twórcy
autor
  • Department of Biomedical Engineering, National Institute of Technology, Raipur, Chhattisgarh 492010, India
  • Department of Biomedical Engineering, National Institute of Technology, Raipur, Chhattisgarh 492010, India
Bibliografia
  • [1] Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Machine Intell 1990;12(7):629–39.
  • [2] Gerig G, Kubler O, Kikinis R, Jolesz FA. Nonlinear anisotropic filtering of MRI data. IEEE Trans Med Imaging 1992;11 (2):221–32.
  • [3] Saha PK, Udupa JK. Scale-based diffusive image filtering preserving boundary sharpness and fine structures. IEEE Trans Med Imaging 2001;20(11):1140–55.
  • [4] Heydari M, Karami MR, Babakhani A. A new adaptive coupled diffusion PDE for MRI Rician noise. Signal Image Video Process 2016;10(7):1211–8.
  • [5] Roy S, Butman JA, Pham DL. Robust skull stripping using multiple MR image contrasts insensitive to pathology. NeuroImage 2017;146:132–47.
  • [6] Dahmen T, Engstler M, Pauly C, Trampert P, Jonge ND, Mücklich F, et al. Feature adaptive sampling for scanning electron microscopy, Scientific Reports. Nature 2016;6.
  • [7] Xia S, Huang Y, Peng S, Wu Y, Tan X. Adaptive anisotropic diffusion for noise reduction of phase images in Fourier domain Doppler optical coherence tomography. Biomed Opt Express 2016;7(8):2912–26.
  • [8] Ben M. Adaptive noise-reducing anisotropic diffusion filter. Neural Comput Appl 2016;27(5):1273–300.
  • [9] Ovireddy S, Muthusamy E. Speckle suppressing anisotropic diffusion filter for medical ultrasound. Ultrasonic Imaging 2014;36(2):112–32.
  • [10] Rafati M, Arabfard M, Rafati Rahim Zadeh M, Maghsoudloo M. Assessment of noise reduction in ultrasound images of common carotid and brachial arteries. IET Computer Vision 2016;10(1):1–8.
  • [11] Monteil J, Beghdadi A. New interpretation and improvement of the nonlinear anisotropic diffusion for image enhancement. IEEE Trans Pattern Anal Mach Intell 1999;21(9):940–6.
  • [12] Monteil J, Beghdadi A. A new adaptive nonlinear anisotropic diffusion for noise smoothing. Proc International Conference on Image Processing (ICIP) 1998;3:254–8.
  • [13] Fernández MB, Hidalgo MG, Mecías AL, New estimation method of the contrast parameter for the Perona–Malik diffusion equation, Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization.
  • [14] Kim HY, Gradient histogram-based anisotropic diffusion, [Online] Available: http://www.lps.usp.br/hae/ghad.pdf.
  • [15] Kim HY, An anisotropic diffusion with meaningful scale parameter, [Online] Available: Http://Www.Lps.Usp.Br/Hae/ Meaningfulscale.Pdf.
  • [16] Xu J, Jia Y, Shi Z, Pang K. An improved anisotropic diffusion filter with semi-adaptive threshold for edge preservation. Signal Process 2016;119:80–91.
  • [17] Black MJ. Robust anisotropic diffusion. IEEE Trans Image Process 1998;7(3):42–432.
  • [18] Rifkah E, Amer A. Fast automated stopping-time and edge-strength estimation for anisotropic diffusion. Proc. IEEE International Conference on Acoustics, Speech and Signal Processing. 2008. pp. 933–6.
  • [19] Ferrari RJ. Off-line determination of the optimal number of iterations of the robust anisotropic diffusion filter applied to denoising of brain MR images. Med Bio Eng Computing 2013;51(1-2):71–88.
  • [20] Wang Y. Region-based adaptive anisotropic diffusion for image enhancement and denoising. Opt Eng 2010;49(11).
  • [21] Voci F. Estimating the gradient threshold in the Perona- Malik equation. IEEE Mag Signal Process 2004;21(3):39–46.
  • [22] Nafis UK, Arya KV, Pattanaik M. Histogram statistics based variance controlled adaptive threshold in anisotropic diffusion for low contrast image enhancement. Signal Process 2013;93(6):1684–93.
  • [23] Toufique Y. Ultrasound image enhancement using an adaptive anisotropic diffusion filter. Proc. Middle East Conference on Biomedical Engineering (MECBME). 2014. pp. 1–4.
  • [24] Tsiotsios C, Petrou M. On the choice of the parameters for anisotropic diffusion in image processing. J Pattern Recogn Arch 2013;46(5):1369–81.
  • [25] Kim S, Kang S, Kim YH. Anisotropic diffusion noise filtering using region adaptive smoothing strength. J Visual Commun Image Represent 2016;40(Part A):384–91.
  • [26] Black MJ, Sapiro G. Edges as outliers: anisotropic smoothing using local image statistics. Scale-Space Theories in Computer Vision, vol. 1682 of the series Lecture Notes in Computer Science. 2002. pp. 259–70.
  • [27] Wang H, Chen Y, Fang T, Tyan J, Ahuja N. Gradient adaptive image restoration and enhancement. Proc. International Conference on Image Processing; 2006. pp. 2893–6. http://dx.doi.org/10.1109/ICIP.2006.313034.
  • [28] Rivest J, Soill P, Beucher S. Morphological gradients. J Electron Imaging 1993;2(4):326–36.
  • [29] Sen D, Pal SK. Gradient histogram: thresholding in a region of interest for edge detection. Image Vision Comput 2010;28 (4):677–95.
  • [30] Zhu J, Lin X, Blum RS, Gu Y. Parameter estimation from quantized observations in multiplicative noise environments. IEEE Trans Signal Process 2015;63(15):4037–50.
  • [31] Wang FP, Shui PL. Noise-robust colour edge detector using gradient matrix and anisotropic Gaussian directional derivative matrix. Pattern Recogn 2016;52:346–57.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4730692d-3626-4119-935c-20aba0e486de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.