PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Redukcja emisji metanu i węglowodorów aromatycznych ze składowisk odpadów w biofiltrze – badania polowe

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Minimization of Methane and Selected Aromatic Hydrocarbons Emissions from Municipal Landfill in Biofilters – a Field Study
Języki publikacji
PL
Abstrakty
EN
Discussion on counteracting the greenhouse effect focused on the reduction of CO2 emissions mainly from the fossil fuel burning. There is often forgotten that the important role in greenhouse effect play other gases, such as methane, but its production is weakly associated with the combustion of fossil fuels. The global warming potential for methane is approx. 25-fold higher than that of CO2.Methane is located at second place on the list of the substances responsible for rising the temperature of the Earth’ atmosphere. Taking into account the global action towards prevention the climate changes, a reduction of methane emissions should be enhanced. It could significantly improve the atmospheric air quality. The aim of the study was to evaluate the efficiency of bio-oxidation of methane and selected aromatic hydrocarbons emitted from municipal solid waste landfills. The research was carried out under field scale for 10 months, from early summer to early spring. An open type biofilter worked at variable loading rate of landfill gas and under different climatic conditions. Due to the low gas pressure inside the waste body, the gas suction was applied to provide a continuous gas flow to the biofilter. This was resulted in landfill gas dilution by atmospheric air migrating through the leakiness in the gas supply system. The study showed that the temperature was limiting factor in the processes of bio-oxidation of methane and monoaromatic hydrocarbons such as BTEXs in field scale biofilter. During winter season the realbed temperature fall below 0°C throughout the whole profile of the biofilter. This led to the freezing of the water contained in the soil pores, which prevented the flow of gas along the biofilter. In other seasons, where the average bed temperature ranged from 5.5 to 42.3°C, biofilter worked reaching the 100% efficiency of BTEXs removal, at average mass loading rate of 26.75 ug BTEXs m-2d-1, and 42% efficiency of methane removal at average mass loading rate of 14.6 g CH4 m-2d-1. High efficiencies of volatile organic compounds (VOCs) removal from landfill gas can be explained by dilution of gas stream entering the biofilter with the atmospheric air. Calculation of elimination capacity of particular VOCs and the evaluation of the impact of VOCs concentration on removal efficiencies was impossible due to their total oxidation in the biofilter.
Rocznik
Strony
1053--1073
Opis fizyczny
Bibliogr. 23 poz., tab., rys.
Twórcy
autor
  • Politechnika Lubelska
Bibliografia
  • 1. Gawłowski S., Listowska-Gawłowska R., Piecuch T.: Bezpieczeństwo energetyczne kraju. Koszalin 2010.
  • 2. Piementel D.: Energy production from maize, Problemy Ekorozwoju/Problems of Sustainable Development. 7(2), 15–22 (2012).
  • 3. Ciais P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries, J. Galloway, M. Heimann, C. Jones, C. LeQuéré, R.B. Myneni, S. Piao, P. Thornton: Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. IPCC 2013, IPCC Assessment Report, Chapter 6, Carbon and other Biochemical Cycles 2013.
  • 4. Frankenberg C., Aben I., Bergamaschi P., Dlugokencky E.J., van Hees R., Houweling S., van der Meer P., Snel R., Tol P.: Global columnaveraged methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY: Trends and variability. Journal of Geophysical Research: Atmospheres. 116(D4) (2011), DOI: 10.1029/2010JD014849
  • 5. Krajewski P.: Food safety and sustainable development, Problemy Ekorozwoju/ Problems of Sustainable Development. 9(2), 79–86 (2014).
  • 6. Bielińska E.J., Futa B., Baran S., Pawłowski L., Eco-energy anthropopressure in the agricultural landscape, Problemy Ekorozwoju/Problems of Sustainable Development. 9(1), 99–111 (2014).
  • 7. Siemek S., Nagy S., Siemek P.: Challenges for Sustainable Development: The Case of Shale Gas Exploitation in Poland. Problemy Ekorozwoju /Problems of Sustainable Development. 8(1), 91–104 (2013).
  • 8. Mazurczak M., Sówka I., Zwoździak J.: Wybrane aspekty środowiskowe i technologiczne związane z rozpoznaniem i wydobyciem gazu ziemnego z łupków. Rocznik Ochrona Środowiska (Annual Set the Environment Protection). 15, 2496–2509 (2013).
  • 9. Huber-Humer M., Gebert J., Hilger H.: Biotic systems to mitigate landfill methane emissions. Waste Manage. Res. 26, 33–46 (2008).
  • 10. Pawłowska M.: Rola biofiltracji w kontroli emisji gazu składowiskowego w świetle zaleceń dyrektywy UE w sprawie składowania odpadów. Rocznik Ochrona Środowiska (Annual Set the Environment Protection). 13, 303–314 (2011).
  • 11. Staszewska E. Pawłowska M.: Control of landfill gases emission with particular emphasis on BTEX. Ecological Chemistry and Engineering. 19(2), 239–248 (2012).
  • 12. Pawłowska M., Stępniewski W.: Biochemical reduction of methane emission from landfills. Environmental Engineering Science. 23(4), 666–672 (2006).
  • 13. Cao Y., Piecuch I.: The Role of the State in Achieving Sustainable Development in Human Capital, Technology and Environmental Protection. Rocznik Ochrona Środowiska (Annual Set the Environment Protection). 14, 314–328 (2012).
  • 14. Udo V., Pawłowski A.: Human progress towards equitable sustainable development – part II, Empirical exploration of sustainable development. Problemy Ekorozwoju/Problems of Sustainable Development. 6(2), 33–62 (2011).
  • 15. Schweigkofler M., Niessner R.: Determination of siloxanes and VOC in landfill gas and sewage gas by canister sampling and GC–MS/AES analysis. Environmental Science and Technology. 33, 3680–3685 (1999).
  • 16. Schuetz C., Bogner J., Chanton J., Blake D., Morcet M., Kjeldsen P.: Comparative oxidation and net emissions of methane and selected nonmethane organic compounds in landfill cover soils. Environmental Science and Technology. 37(22), 5150–5158 (2003).
  • 17. Kim K.H., Shonb Z.H., Kim M.Y., Sunwoo Y., Jeon E.C., Honge J.H., Major aromatic VOC in the ambient air in the proximity of an urban landfill facility. Journal of Hazardous Materials. 150, 754–764 (2008).
  • 18. Tassi F., Montegrossi G., Vaselli O., Liccioli C., Moretti S., Nisi B., Degradation of C2-C15 Volatile organic compounds in a landfill cover soil. Science of the Total Environment. 407, 4513–4525 (2009).
  • 19. Pawłowska M.: Mitigation of Landfill Gas Emission. CRC Press, Taylor& Francis Group 2014.
  • 20. Gebert J.,Gröngröft A.: Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane. Waste Manage. 26, 399–407 (2006).
  • 21. Zeiss C.A.: Accelerated methane oxidation cover systems to reduce greenhouse gas emission from MSW landfills in cold-semi arid regions. Water Air Soil Poll. 176, 285–306 (2006).
  • 22. Einola J-K., Kettunen R.H., Rintala J. A.: Responses of methane oxidation to temperature and water content in cover soil of a boreal landfill. Soi Biol. Biochem. 39(5), 1156–1164 (2007).
  • 23. Kettunen R., Einola J-K. M., Rintala J.A.: Landfill methane oxidation in engineered soil columns at low temperature. Water, Air Soil Poll. 177, 313–334 (2006).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47301089-8383-49fe-a162-3f13cf078684
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.