PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review on relationship between the universality class of the Kardar-Parisi-Zhang equation and the ballistic deposition model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We have analysed the research findings on the universality class and discussed the connection between the Kardar-Parisi-Zhang (KPZ) universality class and the ballistic deposition model in microscopic rules. In one dimension and 1+1 dimensions deviations are not important in the presence of noise. At the same time, they are very relevant for higher dimensions or deterministic evolution. Mostly, in the analyses a correction scale higher than 1280 has not been studied yet. Therefore, the growth of the interface for finite system size [...] value predicted by the KPZ universality class is still predominant. Also, values of [...] obtained from literature are consistent with the expected KPZ values of [...] connection between the ballistic deposition and the KPZ equation through the limiting procedure and by applying the perturbation method was also presented.
Rocznik
Strony
206--216
Opis fizyczny
Bibliogr. 47 poz., rys., wykr.
Twórcy
  • Miskolc-Egyetemvaros, 3515, Institute of Machine and Product Design University of Miskolc, HUNGARY
  • Miskolc-Egyetemvaros, 3515, Institute of Machine and Product Design University of Miskolc, HUNGARY
Bibliografia
  • [1] Tiller W.A. (1991): The Science of Crystallization, Macroscopic.– Phenomena and Defect Generation Cambridge University Press, Cambridge, UK.
  • [2] Ritter G.C., Matthai O., Takai A., Rocher A., Cullis S., Ranganathan S. and Kuroda K., Eds. (1998): Recent Developments in Thin Film Research: Epitaxial Growth and Nanostructures, Electron Microscopy and X-Ray Diffraction. Elsevier Science.– Amsterdam.
  • [3] G. Vekilov G., Iwan J. and Alexander D. (2000): Dynamics of layer growth in protein crystallization.– Chemical Reviews 100, No. 6., pp.2061-2090.
  • [4] Jackson K.A. (2006): Kinetic Processes: Crystal Growth, Diffusion, and Phase Transformations in Materials.– John Wiley & Sons.
  • [5] Chernov A.A. and Nishinaga T. (1987): Growth shapes and their stability at anisotropic interface kinetics: theoretical aspects for solution growth.– Morphology of Crystals, Terra Science Publishers, Tokyo, pp.207-267.
  • [6] Saito Y. (1996): Statistical physics of crystal growth.– World Scientific.
  • [7] Pimpinelli A. and Villain J. (1999): Physics of crystal growth.– Cambridge University Press, p.400.
  • [8] Michely T. and Krug J. (2004): Mounds Islands. Atoms.– Springer Series in Surface Science, vol.42, Springer Verlag Berlin Heidelberg, 10.1007/978-3-642-18672-1.
  • [9] Aqua J-N. (2013): Growth and self-organization of SiGe nanostructures.– Physics Reports, vol.522, No.2, pp.59-189.
  • [10] Vold M.J. (1959): A numerical approach to the problem of sediment volume.– J. Colloid Sci., vo.14, No.2, pp.168-174.
  • [11] Corwin I. (2016) Kardar-Parisi-Zhang universality.– Notices of the AMS, vol.63, No.3, pp.230-239.
  • [12] Tracy C. and Widom H. (1994): Level-spacing distributions and the Airy kernel.– Commun. Math. Phys., vol.159, pp.151-174.
  • [13] Tracy C. and Widom H. (1996): On orthogonal and symplectic matrix ensembles.– Commun. Math. Phys., vol.177, pp.727-754.
  • [14] Villain J. (1991): Continuum models of crystal growth from atomic beams with and without desorption.– Journal de Physique, vol.1, No.1, pp.19-42.
  • [15] Barabasi A.-L. and Stanley E. (1995): Fractal Concepts in Surface Growth.– Cambridge Univ. Press, Cambridge.
  • [16] Kardar M., Parisi G. and Zhang Y.C. (1986): Dynamic scaling of growing interfaces.– Physical Review Letters, vol.56, No.9, p.889-892.
  • [17] Hwa T. and Kardar M. (1992): Avalanches, hydrodynamics, and discharge events in models of sandpiles.– Physical Review A, vol.45, No.10, p.7002-7023.
  • [18] Marsili M., Maritan A., Toigo F. and Banavar J.R. (1996): Stochastic growth equations and reparametrization invariance.– Reviews of Modern Physics, vol.68, No.4, pp.963-983.
  • [19] Lam C.-H. and Sander L.M. (1993): Inverse method for interface problems.– Physical Review Letters, vol.71, No.4, 561-564.
  • [20] Park S.-C., Kim D. and ParkJ.-M. (2001): Derivation of continuum stochastic equations for discrete growth models.– Physical Review E, vol.65, No.1, pp.1-4, https://doi.org/10.1103/PhysRevE.65.015102.
  • [21] Racz Z., Siegert M., Liu D. and Plischke M. (1991): Scaling properties of driven interfaces: symmetries, conservation laws, and the role of constraints.– Physical Review A, vol.43, No.10, pp.5275-5283.
  • [22] Vvedensky D.D., Zangwill A., Luse C.N. and Wilby M.R. (1993): Stochastic equations of motion for epitaxial growth.– Physical Review E, vol.48, No.2, pp.852-862.
  • [23] Predota M. and Kotrla M. (1996): Stochastic equations for simple discrete models of epitaxial growth.– Physical Review E, vol.54, No.4, pp.3933-3942.
  • [24] Costanza G. (1997): Langevin equations and surface growth.– Physical Review E 55, No.6, pp.6501-6506.
  • [25] Bantay P. and Janosi I.M. (1992): Avalanche dynamics from anomalous diffusion.– Physical Review Letters, vol.68, No.13, pp.2058-2061.
  • [26] Corral A. and Diaz-Guilera A. (1997): Symmetries and fixed point stability of stochastic differential equations modeling self-organized criticality.– Physical Review E 55, No.3, pp.2434-2445.
  • [27] Tokihiro T., Takahashi D., Matsukidaira J. and Satsuma J. (1996): From soliton equations to integrable cellular automata through a limiting procedure.– Physical Review Letters, vol.76, No.18, pp.3247-3250.
  • [28] Nagatani T. (1998): From ballistic deposition to the Kardar-Parisi-Zhang equation through a limiting procedure.– Physical Review E, vol.58, No.1, pp.700-703.
  • [29] Vvedensky D.D. (2003): Edwards-Wilkinson equation from lattice transition rules.– Physical Review E, vol.67, No.2, pp.1-4.
  • [30] Kardar M., Parisi G., Zhang Y.-C. (1986): Dynamic scaling of growing interfaces.– Physical Review Letters, vol.56, No.9, pp.889-892.
  • [31] Costanza G. (1997): Langevin equations and surface growth.– Physical Review E, vol.55, No.6, pp.6501-6506.
  • [32] Vvedensky D.D. (2003): Edwards-Wilkinson equation from lattice transition rules.– Physical Review E, vol.67, No.2, pp.1-4.
  • [33] Edwards S.F. and Wilkinson D.R. (1982): The surface statistics of a granular aggregate.– Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol.381, No.1780, pp.17-31.
  • [34] Katzav E. and Schwartz M. (2004): What is the connection between ballistic deposition and the Kardar-Parisi Zhang equation?– Physical Review E, vol.70, No.6, pp.1-8.
  • [35] Miranda R., Ramos M. and Cadilhe A. (2003): Finite-size scaling study of the ballistic deposition model in (1+ 1)- dimensions.– Computational Materials Science, vol.27, No.1-2, pp.224-229.
  • [36] Family F. and Vicsek T. (1985): Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model.– Journal of Physics A: Mathematical and General, vol.18, No.2, p.75.
  • [37] Cadilhe A.M., Stoldt C.R., Jenks C.J., Thiel P.A. and Evans J.W. (2000): Evolution of far-from-equilibrium nanostructures on Ag (100) surfaces: Protrusions and indentations at extended step edges.– Physical Review B, vol.61, No.7, pp.4910-4925.
  • [38] Family F. and Vicsek T. (1991): Dynamics of Fractal Surfaces.– World Scientific.
  • [39] Corwin I. (2016): Kardar-Parisi-Zhang universality.– Notices of the AMS, vol.63, No.3, pp.230-239.
  • [40] Bognár G. (2020): Roughening in nonlinear surface growth model.– Applied Sciences, vol.10, No.4, p.10. https://doi.org/10.3390/app10041422.
  • [41] Barna I.F., Bognár G., Guedda M., Mátyás L. and Hriczó K. (2020): Analytic self-similar solutions of the Kardar Parisi-Zhang interface growing equation with various noise terms.– Mathematical Modelling and Analysis, vol.25, No.2, pp.241-256. 2020. https://doi.org/10.3846/mma.2020.10459.
  • [42] Barna I.F., Bognár G., Guedda M., Mátyás L. and Hriczó K. (2019): Analytic traveling-wave solutions of the Kardar-Parisi-Zhang interface growing equation with different kind of noise terms.– In book: Differential and Difference Equations with Applications, ICDDEA, Lisbon, Portugal, pp.239-253, arXiv:1908.09615.
  • [43] Sayfidinov O. and Bognár G. (2020): Numerical solutions of the Kardar-Parisi-Zhang interface growing equation with different noise terms.– In: Jármai K., Voith K. (eds) Vehicle and Automotive Engineering 3. VAE 2020. Lecture Notes in Mechanical Engineering. Springer, vol.3, pp.302-311, https://doi.org/10.1007/978-981-15- 9529-5_27.
  • [44] Bognár G. (2020): Roughening in nonlinear surface growth model.– Applied Sciences, vol.10, No.4, p.1422, doi:10.3390/app10041422.
  • [45] Nagatani T. (1998): From ballistic deposition to the Kardar-Parisi-Zhang equation through a limiting procedure.– Physical Review E, vol.58, No.1, pp.700-703.
  • [46] Cross M.C. and Hohenberg P.C. (1993): Pattern formation outside of equilibrium.– Reviews of Modern Physics, vol.65, No.3, pp.851-1112.
  • [47] Sayfidinov O. and Bognár G. (2020): One dimensional Kardar-Parisi-Zhang equation in various initial condition amplitudes.– Journal of Advances in Applied & Computational Mathematics, vol.7, pp.32-37.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-472ee32a-5835-45c1-9ccb-5e3029ce2d84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.