PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the mechanism of gas bubble break-up in liquids during the self-aspirating impeller operation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Feasibility of a model of gas bubble break-up and coalescence in an air-lift column enabling determination of bubble size distributions in a mixer with a self-aspirating impeller has been attempted in this paper. According to velocity measurements made by the PIV method with a self-aspirating impeller and Smagorinski’s model, the spatial distribution of turbulent energy dissipation rate close to the impeller was determined. This allowed to positively verify the dependence of gas bubble velocity used in the model, in relation to turbulent energy dissipation rate. Furthermore, the range of the eddy sizes capable of breaking up the gas bubbles was determined. The verified model was found to be greatly useful, but because of the simplifying assumptions some discrepancies of experimental and model results were observed.
Rocznik
Strony
441--457
Opis fizyczny
Bibliogr. 39 poz., rys., wykr.
Twórcy
autor
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, ul. Wólczańska 213, 90-924 Łódź, Poland
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, ul. Wólczańska 213, 90-924 Łódź, Poland
autor
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, ul. Wólczańska 213, 90-924 Łódź, Poland
Bibliografia
  • 1. Baldi S., Hann D., Yianneskis M., 2002. On the measurements of turbulence energy dissipation in stirred vessels with PIV techniques. 10th International Symposium on Applied of Laser Technique to Fluid Mechanics. Lisboa, Portugal, 8-11 July 2002.
  • 2. Baldi S., Yianneskis M., 2003. On the direct measurement of turbulence energy dissipation in stirred vessels with PIV. Ind. Eng. Chem. Res., 42, 7006-7016. DOI: 10.1021/ie0208265.
  • 3. Delafosse A., Collignon M.-L., Crine M., Toye D., 2011. Estimation of the turbulent kinetic energy dissipation rate from 2D-PIV measurements in a vessel stirred by an axial Mixel TTP impeller. Chem. Eng. Sci., 66, 1728-1737. DOI: 10.1016/j.ces.2011.01.011.
  • 4. Deshmukh N.A., Patil S.S., Joshi J.B., 2006. Gas induction characteristics of hollow self-inducing impeller. Chem. Eng. Res. Des., 84, 124-132. DOI: 10.1205/cherd05005.
  • 5. de Jong J., Cao L., Woodward S.H., Salazar J.P.L.C., Collins L.R., Meng H., 2009. Dissipation rate estimation from PIV in zero-mean isotropic turbulence. Exp. Fluids, 46, 499-525. DOI: 10.1007/s00348-008-0576-3.
  • 6. Evans G.M., Rielly C.D., Davidson J.F., Carpenter K.J., 1992. Hydrodynamic characteristics of a gas-inducing impeller. Fluid Mechanics of Mixing, 10, 153-161. DOI: 10.1007/978-94-015-7973-5_18.
  • 7. Forrester S.E., Rielly C.D., Carpenter K.J., 1998. Gas-inducing impeller design and performance characteristics. Chem. Eng. Sci., 53, 603-615. DOI: 10.1016/S0009-2509(97)00352-7.
  • 8. Forrester S.E., Rielly C.D., 1998. Bubble formation from cylindrical, flat and concave sections exposed to a strong liquid cross-flow. Chem. Eng. Sci., 53, 1517-1527. DOI: 10.1016/S0009-2509(98)00019-0.
  • 9. Joshi J.B., Nere N.K., Rane C.V., Murthy B.N., Mathpati C.S., Patwardhan A.W., Ranade V.V., 2011. CFD simulation of stirred tanks: Comparison of turbulence models. Part I: Radial flow impellers. Can. J. Chem. Eng., 89, 23-28. DOI: 10.1002-cjce.20446
  • 10. Ju F., Cheng Z.-M., Chen J.-H., Chu X.-H., 2009. A novel design for a gas-inducing impeller at the lowest critical speed. Chem. Eng. Res. Des., 87, 1069-1074. DOI: 10.1016/j.cherd.2009.01.009.
  • 11. Kawase Y., Moo-Young M., 1990. Mathematical models for design of bioreactors: Applications of Kolmogoroff’s theory of isotropic turbulence. Chem. Eng. J., 43, B19-B41.
  • 12. Kleissl J., 2004. Field experimental study of the Smagorinsky model and application to Large Eddy Simulation. PhD Thesis. Johns Hopkins University, Baltimore.
  • 13. Kulkarni A.A., Joshi J.B., 2005. Bubble formation and bubble rise velocity in gas-liquid systems: A review. Ind. Eng. Chem. Res., 44, 5873-5931. DOI: 10.1021/ie049131p.
  • 14. Laakkonen M., Alopaeus V., Aittama J., 2002. The determination of parameters for bubble breakage and coalescence functions for gas-liquid systems in a mixed tank. Annual Meeting Archive - American Institute of Chemical Engineers, Indianapolis, United States.
  • 15. Martín M., Montes F.J., Galán M.A., 2008. Bubbling process in stirred tank reactors I: Agitator effect on bubble size, formation and rising. Chem. Eng. Sci., 63, 3212-3222. DOI: 10.1016/j.ces.2008.03.028.
  • 16. Martín M., Montes F.J., Galán M.A., 2008. Influence of impeller type on the bubble breakup process in stirred tanks. Ind. Eng. Chem. Res., 47, 6251-6263. DOI: 10.1021/ie800063v.
  • 17. Micheletti M., Baldi S., Yeoh S.L., Ducci A., Papadakis G., Lee K.C., Yianneskis M., 2004. On spatial and temporal variations and estimates of energy dissipation in stirred reactors. Chem. Eng. Res. Des., 82, 1188-1198. DOI: 10.1205/cerd.82.9.1188.44172.
  • 18. Patil S.S., Joshi J.B., 1999. Stability of gas-inducing type impellers. Can. J. Chem. Eng., 77, 793-803. DOI: 10.1002/cjce.5450770503.
  • 19. Patwardahan A.W., Joshi J.B., 1999. Design of gas-inducing reactors. Ind. Eng. Chem. Res., 38, 49-80. DOI: 10.1021/ie970504e.
  • 20. Pohorecki R., Moniuk W., Zdrójkowski A., Bielski P., 2001. Hydrodynamics of a pilot plant bubble column under elevated temperature and pressure. Chem. Eng. Sci., 56, 1167-1174. DOI:10.1016/S0009-2509(00)00336-
  • 21. Pohorecki R., Moniuk W., Bielski P., Zdrójkowski A., 2001. Modeling of the coalescence/redispersion processes in bubble columns. Chem. Eng. Sci., 56, 6157-6164. DOI: 10.1016/S0009-2509(01)00214-7.
  • 22. Poncin S., Nguyen C., Midoux N., Breysse J., 2002. Hydrodynamics and volumetric gas-liquid mass transfer coefficient of a stirred vessel equipped with a gas-inducing impeller. Chem. Eng. Sci., 57, 3299-3306. DOI: 10.1016/S0009-2509(01)00214-7.
  • 23. Rigby G.D., Evans G.M., Jameson G.J., 1997. Bubble break up from ventilated cavities in multiphase reactors. Chem. Eng. Sci., 52, 3677-3677. DOI: 10.1016/S0009-2509(97)00214-5.
  • 24. Rzyski E., Stelmach J., 2002. Fluktuacje prędkości podczas mieszania cieczy nieniutonowskiej. Inż. Ap. Chem., 41 (33), 4s, 113-115.
  • 25. Sardeindg R.F., Poux M., Xuereb C., 2006. Development of a new gas-inducing turbine family: The partially shrouded turbine. Ind. Chem. Eng. Res., 45, 4791-4804. DOI: 10.1021/ie051303a.
  • 26. Sheng J., Meng H., Fox R.O., 2000. A large eddy PIV method for turbulence dissipation rate estimation. Chem. Eng. Sci., 55, 4423-4434. DOI: 10.1016/S0009-2509(00)00039-7.
  • 27. Stelmach J., 2000. Badanie pracy samozasysającego mieszadła tarczowego. PhD Thesis. Lodz University of Technology, Łódź (in Polish).
  • 28. Stelmach J., 2002. Fluktuacje prędkości na wysokości samozasysającego mieszadła tarczowego. Inż. Chem. Proces., 22, 3e, 1315-1320 (in Polish).
  • 29. Stelmach J., 2006. Rozmiary pęcherzyków w początkowej fazie samozasysania. Inż. Ap. Chem., 45, (37), 6s, 225-227 (in Polish).
  • 30. Stelmach J., 2007. Rozkłady wielkości pęcherzyków gazu w początkowej fazie samozasysania. Inż. Ap. Chem., 46 (38), 4-5, 117-119.
  • 31. Stelmach J., 2014. Hydrodynamika układu dwufazowego ciecz-gaz - Wykorzystanie metod fotooptycznych. Monografie Politechniki Łódzkiej, Łódź.
  • 32. Stelmach J., Kurasiński T., Kuncewicz Cz., 2005. Analiza porównawcza wybranych metod obliczania szybkości dyssypacji energii. Inż. Chem. Proces., 26, 201-215 (in Polish).
  • 33. Stelmach J., Rzyski E., Kania A., 2003. Energy dissipation on the level of a self-aspirating disk impeller. 11th Conference on Mixing, Bamberg, October 2003, Germany.
  • 34. Stręk F., 1981. Mieszanie i mieszalniki. WNT, Warszawa (in Polish).
  • 35. Tan R.B.H., Chen W.B., Tan K.H., 2000. A non-spherical model for bubble formation with liquid cross-flow. Chem. Eng. Sci., 55, 6259-6267. DOI:10.1016/S0009-2509(00)00211-6.
  • 36. Tanaka T., Eaton J.K., 2007. A correction method for measuring turbulence kinetic energy dissipation rate by PIV. Exp. Fluids, 42, 893-902. DOI: 10.1007/s00348-007-0298-y.
  • 37. Wang Z., Peng X., Li X., Wang S., Cheng Z., Ju F., 2013. Impact of liquid driving flow on the performance of a gas-inducing impeller. Chem. Eng. Process. Process Intensif., 69, 63-69. DOI: 10.1016/j.cep.2013.02.009.
  • 38. Zhang L., Shoji M., 2001. Aperiodic bubble formation from a submerged orifice. Chem. Eng. Sci., 56, 5371-5381. DOI: 10.1016/S0009-2509(01)00241-X.
  • 39. Zhang W., Tan R.B.H., 2000. A model for bubble formation and weeping at a submerged orifice. Chem. Eng. Sci., 55, 6243-6250. DOI: 10.1016/S0009-2509(00)00215-3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4722a1f2-5874-4390-b970-4b93f46bcbbd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.