PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Badanie wymiany ciepła podczas wrzenia w przepływie czynników roboczych - FC-72 i wody destylowanej w minikanałach

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Flow boiling heat transfer in minichannels with FC-72 and distilled water as working fluids
Języki publikacji
PL
Abstrakty
PL
W artykule zestawiono wartości lokalnych współczynników przejmowania ciepła uzyskane z badań wymiany ciepła podczas przepływu czynnika chłodniczego FC-72 i wody destylowanej przez pionowy minikanał podczas zmiany przepływu. Minikanał posiadał wymiary: głębokość - 1,7 mm, szerokość - 16 mm, długość - 180 mm oraz był ogrzewany asymetrycznie. Elementem grzejnym była płyta grzejna z super stopu Haynes - 230 o grubości 0,45 mm. Lokalne współczynniki przejmowania ciepła wyznaczono na styku ciecz wrząca - powierzchnia grzejna z warunku brzegowego trzeciego rodzaju, przy wykorzystaniu metody jednowymiarowej. Temperatura powierzchni na zewnętrznej powierzchni grzejnej stykającej się bezpośrednio z otoczeniem rejestrowana była za pomocą termowizji (IRT). Płyta szklana stanowiąca drugą ściankę kanału pozwoliła na jednoczesną obserwację struktur przepływu dwufazowego. W pracy omówiono i pokazano stanowisko pomiarowe z jego obiegami i systemami. Przedstawiono przegląd literatury dotyczący zastosowania różnych czynników roboczych w badaniach innych naukowców. Zestawiono i przeanalizowano uzyskane zależności współczynnika przejmowania ciepła w funkcji odległości od wlotu do wylotu minikanału podczas zwiększania strumienia ciepła i skonstruowano krzywe wrzenia, otrzymane na podstawie badań z wykorzystaniem dwóch czynników roboczych: FC-72 i wody destylowanej, przy uzmiennianiu natężenia przepływu. Porównano uzyskane wyniki oraz zarejestrowane struktury wrzenia.
EN
The present paper compares local heat transfer coefficients obtained from the study of flow boiling heat transfer with FC-72 and distilled water in a vertical, asymmetrically heated minichannel at variate flow rate. The minichannel dimensions were as follows: depth – 1.7 mm, width - 16 mm, length - 180 mm. A 0.45 mm thick Haynes-230 plate was the heating element. The local heat transfer coefficients were determined by the one-dimensional method from the third type boundary condition at the interface between the boiling liquid and the heated surface. The temperature at the external face of the heated surface in direct contact with the ambient was registered with infrared thermography (IRT). One of the minichannel walls was made of a glass pane, thus allowing observations of two-phase flow structures. The measurement setup with its circuits and systems was described in detail. The literature review focused on the use of different working fluids in the studies conducted by other researchers. The dependencies of the heat transfer coefficient as a function of the distance from the inlet to the outlet of the minichannel at increasing heat flux were compared and analysed. Boiling curves obtained based on the studies with FC-72 and distilled water were plotted for variated flow rate. The results and recorded boiling structures were compared.
Rocznik
Strony
239--245
Opis fizyczny
Bibliogr. 34 poz., rys., pełen tekst na CD
Twórcy
autor
  • Politechnika Świętokrzyska w Kielcach
autor
  • Politechnika Świętokrzyska w Kielcach
Bibliografia
  • 1. Bang K.H., Kim K.K., Lee S.K., Lee B.W. Pressure effect on flow boiling heat transfer of water in minichannels. International Journal of Thermal Sciences, vol. 50, pp. 280–286, 2011.
  • 2. Bloch G., Bruder M., Sattelmayer T. A study on the mechanisms triggering the departure from nucleate boiling in subcooled vertical flow boiling using a complementary experimental approach. International Journal of Heat and Mass Transfer, vol. 92, pp. 403–413, 2016.
  • 3. Calibration certificate No. K1501035, Calibration laboratory No. 2372, accredited by Czech accreditation Institute under ČSN EN ISO/IEC 17025:2005 for: Calibration of non-contact temperature measuring instruments.
  • 4. Deng D., Xie Y., Huang Q., Tang Y., Huang L., Huang X. Flow boiling performance of Ω-shaped reentrant copper microchannels with different channel sizes. Experimental Thermal and Fluid Science, vol. 69, pp. 8–18, 2015.
  • 5. Diaz M.C., Schmidt J. Experimental investigation of transient boiling heat transfer in microchannels. International Journal of Heat and Fluid Flow, vol. 28, pp. 95–102, 2007. 6. Estrada-Perez C.E., Yoo J., Hassan Y.A., 2015. Feasibility investigation of experimental visualization techniques to study subcooled boiling flow. International Journal of Multiphase Flow, vol. 73, pp. 17–33.
  • 7. Hozejowska S., Piasecka M. Equalizing calculus in Trefftz method for solving two-dimensional temperature field of FC-72 flowing along the minichannel. Heat and Mass Transfer, vol. 50, pp. 1053–1063, 2014.
  • 8. Hozejowska S., Piasecka M., Poniewski M.E. Boiling heat transfer in vertical minichannels. Liquid crystal experiments and numerical investigations. International Journal of Thermal Sciences, vol. 48, pp. 1049–1059, 2009.
  • 9. Hożejowska S., Maciejewska B., Hożejowski L. Application of adjustment calculus in the nodeless Trefftz method for a problem of two-dimensional temperature field of the boiling liquid flowing in a minichannel. EPJ Web of Conferences, vol. 67, no. 02037, 2014.
  • 10. Jokar A., Hosni M.H., Eckels S.J. Correlations for heat transfer and pressure drop of glycol-water and air flows in minichannel heat exchangers. ASHRAE Transactions, pp. 213–224, 2005.
  • 11. Kaniowski R., Poniewski M. Measurements of two-phase flow patterns and local void fraction in vertical rectangular minichannel. Archives of Thermodynamics, vol. 34, pp. 3–21, 2013.
  • 12. Mehta B., Khandekar S. Infra-red thermography of laminar heat transfer during early thermal development inside a square minichannel. Experimental Thermal and Fluid Science, vol. 42, pp. 219–229, 2012.
  • 13. Mikielewicz D., Mikielewicz J. A thermodynamic criterion for selection of working fluid for subcritical and supercritical domestic micro CHP. Applied Thermal Engineering, vol. 30, pp. 2357–2362, 2010.
  • 14. Mikielewicz D., Wajs J., Gliński M., Zrooga A.B.R.S. Experimental investigation of dryout of SES 36, R134a, R123 and ethanol in vertical small diameter tubes. Experimental Thermal and Fluid Science, vol. 44, pp. 556–564, 2013.
  • 15. Ozer A.B., Oncel A.F., Hollingsworth D.K., Witte L.C. A method of concurrent thermographic-photographic visualization of flow boiling in a minichannel. Experimental Thermal and Fluid Science, vol. 35, pp. 1522–1529, 2011.
  • 16. Pastuszko R. Pool boiling for extended surfaces with narrow tunnels - visualization and a simplified model. Experimental Thermal and Fluid Science, vol. 38, pp. 149–164, 2012.
  • 17. Pastuszko R. Pool boiling on micro-fin array with wire mesh structures. International Journal of Thermal Sciences, vol. 49, pp. 2289–2298, 2010.
  • 18. Pastuszko R., Piasecka M. Pool boiling on surfaces with minifins and micro-cavities. Journal of Physics: Conference Series, vol. 395, no. 12137, 2012.
  • 19. Pastuszko R., Wójcik T.M. Experimental investigations and a simplified model for pool boiling on micro-fins with sintered perforated foil. Experimental Thermal and Fluid Science, vol. 63, pp. 34–44, 2015.
  • 20. Piasecka M. Impact of selected parameters on refrigerant flow boiling heat transfer and pressure drop in minichannels. International Journal of Refrigeration, vol. 56, pp. 198–212, 2015.
  • 21. Piasecka M. The use of enhanced surface in flow boiling heat transfer in a rectangular minichannel. Experimental Heat Transfer, vol. 27, pp. 231–255, 2014.
  • 22. Piasecka M. Flow boiling heat transfer in a minichannel with enhanced heating surface. Heat Transfer Engineering, vol. 35, pp. 903–912, 2014.
  • 23. Piasecka M. Heat transfer mechanism, pressure drop and flow patterns during FC-72 flow boiling in horizontal and vertical minichannels with enhanced walls. International Journal of Heat and Mass Transfer, vol. 66, pp. 472–488, 2013.
  • 24. Piasecka M., Hozejowska S., Poniewski M.E. Experimental evaluation of flow boiling incipience of subcooled fluid in a narrow channel. International Journal of Heat and Fluid Flow, vol. 25, pp. 159–172, 2004.
  • 25. Piasecka M., Maciejewska B. Heat transfer coefficient during flow boiling in a minichannel at variable spatial orientation. Experimental Thermal and Fluid Science, vol. 68, pp. 459–467, 2015.
  • 26. Piasecka M., Maciejewska B. Enhanced heating surface application in a minichannel flow and the use of the FEM and Trefftz functions for the solution of inverse heat transfer problem. Experimental Thermal and Fluid Science, vol. 44, pp. 23–33, 2013.
  • 27. Piasecka M., Maciejewska B. The study of boiling heat transfer in vertically and horizontally oriented rectangular minichannels and the solution to the inverse heat transfer problem with the use of the Beck method and Trefftz functions. Experimental Thermal and Fluid Science, vol. 38, pp. 19–32, 2012.
  • 28. Piasecka M., Poniewski M.E. Hysteresis phenomena at the onset of subcooled nucleate flow boiling in microchannels. Heat Transfer Engineering, vol. 25, pp. 44–51, 2004.
  • 29. Piasecka M., Strąk K., Maciejewska B. Calculations of flow boiling heat transfer in a minichannel based on Liquid Crystal and Infrared Thermography data. Heat Transfer Engineering, vol. 38, no. 3, 2017, DOI: 10.1080/01457632.2016.118927.
  • 30. Sobierska E., Kulenovic R., Mertz R. Heat transfer mechanism and flow pattern during flow boiling of water in a vertical narrow channel-experimental results. International Journal of Thermal Sciences, vol. 46, pp. 1172–1181, 2007.
  • 31. Trieu Phan H., Caney N., Marty P., Colasson S., Gavillet J. Flow boiling of water in a minichannel: The effects of surface wettability on two-phase pressure drop. Applied Thermal Engineering, vol. 31, pp. 1894–1905, 2011.
  • 32. www.multimedia.3m.com/mws/media/64892O/fluorinertelectronic-liquid-fc-72.pdf.
  • 33. Yoo J., Estrada-Perez C.E., Hassan Y.A. An accurate wall temperature measurement using infrared thermometry with enhanced two-phase flow visualization in a convective boiling system. International Journal of Thermal Sciences, vol. 90, pp. 248–266, 2015.
  • 34. Zahid A., Palm B., Khodabandeh R. Flow boiling heat transfer, pressure drop and dryout characteristics of R152a in a vertical mini-channel. Experimental Thermal and Fluid Science, vol. 66, pp. 137–149, 2015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-471ceb3c-bd69-47cf-b13a-631ad39d1dba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.