Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Cluster analysis can be defined as applying clustering algorithms with the goal of finding any hidden patterns or groupings in a data set. Different clustering methods may provide different solutions for the same data set. Traditional clustering algorithms are popular, but handling big data sets is beyond the abilities of such methods. We propose three big data clustering methods basedon the firefly algorithm (FA). Three different fitness functions were definedon FA using inter-cluster distance, intra-cluster distance, silhouette value, and the Calinski-Harabasz index. The algorithms find the most appropriate cluster centers for a given data set. The algorithms were tested with nine popular synthetic data sets and one medical data set and are later applied on two badminton data sets with the intention of identifying the different playing styles of players based on their physical characteristics. The results specify that the firefly algorithm could generate better clustering results with high accuracy. The algorithms cluster the players to find the most suitable playing strategy for a given player where expert knowledge is needed in labeling the clusters. Comparisons with a PSO-based clustering algorithm (APSO) and traditional algorithms point out that the proposed firefly variants work in a similar fashion as the APSO method, and they surpass the performance of traditional algorithms.
Wydawca
Czasopismo
Rocznik
Tom
Strony
427--450
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
- University of Sri Jayewardenepura, Department of Computer Science, Faculty of AppliedSciences, Nugegoda, Sri Lanka
autor
- University of Sri Jayewardenepura, Department of Computer Science, Faculty of AppliedSciences, Nugegoda, Sri Lanka
autor
- University of Sri Jayewardenepura, Department of Computer Science, Faculty of AppliedSciences, Nugegoda, Sri Lanka
autor
- University of Sri Jayewardenepura, Department of Statistics, Faculty of Applied Sciences, Nugegoda, Sri Lanka
Bibliografia
- [1] Abirami T., Anandamurugan S.: Data aggregation in wireless sensor networkusing shuffled frog algorithm, Wireless Personal Communications, vol. 90(2), pp. 537–549, 2016.
- [2] Agbaje M.B., Ezugwu A.E., Els R.: Automatic data clustering using hybrid firefly particle swarm optimization algorithm, IEEE Access, vol. 7, pp. 184963–184984, 2019.
- [3] Akay ̈O., Tekeli E., Y ̈uksel G.: Genetic Algorithm with New Fitness Function for Clustering, Iranian Journal of Science and Technology, Transactions A: Science, vol. 44(3), pp. 865–874, 2020.
- [4] Ariyaratne M., Fernando T.: A Comprehensive Review of the Firefly Algorithms for Data Clustering, Advances in Swarm Intelligence, pp. 217–239, 2023.
- [5] Banati H., Bajaj M.: Performance analysis of firefly algorithm for data clustering, International Journal of Swarm Intelligence, vol. 1(1), pp. 19–35, 2013.
- [6] Baskaran M., Sadagopan C.: Synchronous firefly algorithm for cluster head selection in WSN,The Scientific World Journal, vol. 2015, 2015.
- [7] Behravan I., Zahiri S.H., Razavi S.M., Trasarti R.: Finding roles of players infootball using automatic particle swarm optimization-clustering algorithm, BigData, vol. 7(1), pp. 35–56, 2019.
- [8] Blashfield R.K.: The growth of cluster analysis: Tryon, Ward, and Johnson, Multivariate Behavioral Research, vol. 15(4), pp. 439–458, 1980.
- [9] Brucker P.: On the Complexity of Clustering Problems. In: R. Henn, B. Korte, W. Oettli (eds.), Optimization and Operations Research, pp. 45–54, Springer Berlin Heidelberg, Berlin, Heidelberg, 1978.
- [10] Cui X., Potok T.E., Palathingal P.: Document clustering using particle swarm optimization. In: Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005., pp. 185–191, IEEE, 2005.
- [11] Dua D., Graff C.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA, 2019.
- [12] Franti P., Virmajoki O.: Iterative shrinking method for clustering problems, Pattern Recognition, vol. 39(5), pp. 761–765, 2006. doi: 10.1016/j.patcog.2005.09.012.
- [13] Hancer E., Ozturk C., Karaboga D.: Artificial bee colony based image clustering method. In: 2012 IEEE Congress on Evolutionary Computation, pp. 1–5, 2012.
- [14] Hartigan J.A., Wong M.A.: Algorithm AS 136: A k-means clustering algorithm, Journal of the Royal Statistical Society Series C (Applied Statistics), vol. 28(1), pp. 100–108, 1979.
- [15] Hassanzadeh T., Meybodi M.R.: A new hybrid approach for data clusteringusing firefly algorithm and K-means. In: The 16th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP 2012), pp. 007–011, 2012.
- [16] Heinzelman W.R., Chandrakasan A., Balakrishnan H.: Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, 2000.
- [17] Hrosik R.C., Tuba E., Dolicanin E., Jovanovic R., Tuba M.: Brain image segmentation based on firefly algorithm combined with k-means clustering, Studiesin Informatics and Control, vol. 28(2), pp. 167–176, 2019.
- [18] Karol S., Mangat V.: Evaluation of text document clustering approach basedon particle swarm optimization, Central European Journal of Computer Science, vol. 3(2), pp. 69–90, 2013.
- [19] Kuo R., Li P.: Taiwanese export trade forecasting using firefly algorithm basedK-means algorithm and SVR with wavelet transform, Computers & Industrial Engineering, vol. 99, pp. 153–161, 2016.
- [20] Maheshwar, Kaushik K., Arora V.: A Hybrid Data Clustering Using Firefly Algorithm Based Improved Genetic Algorithm, Procedia Computer Science, vol. 58, pp. 249–256, 2015.
- [21] Manshahia M.S., Dave M., Singh S.: Firefly algorithm based clustering technique for Wireless Sensor Networks. In: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 1273–1276, IEEE, 2016.
- [22] Mizuno K., Takamatsu S., Shimoyama T., Nishihara S.: Fireflies can find groupsfor data clustering. In: 2016 IEEE International Conference on Industrial Technology (ICIT), pp. 746–751, IEEE, 2016.
- [23] Omran M., Engelbrecht A.P., Salman A.: Particle swarm optimization method for image clustering, International Journal of Pattern Recognition and Artificial Intelligence, vol. 19(03), pp. 297–321, 2005.
- [24] Pelleg D., Moore A.W.: X-means: Extending k-means with Efficient Estimation of the Number of Clusters. In: ICML’00: Proceedings of the Seventeenth International Conference on Machine Learning, pp. 727–734, 2000.
- [25] Phomsoupha M., Laffaye G.: The science of badminton: game characteristics, anthropometry, physiology, visual fitness and biomechanics, Sports Medicine, vol. 45(4), pp. 473–495, 2015.
- [26] Pitchaimanickam B., Murugaboopathi G.: A hybrid firefly algorithm with particle swarm optimization for energy efficient optimal cluster head selectionin wireless sensor networks, Neural Computing and Applications, vol. 32(12), pp. 7709–7723, 2020.
- [27] Rand W.M.: Objective criteria for the evaluation of clustering methods, Journal of the American Statistical Association, vol. 66(336), pp. 846–850, 1971.
- [28] Sadeghzadeh M.: Data Clustering Using Improved Fire Fly Algorithm. In: Information Technology: New Generations, pp. 801–809, Springer, 2016.
- [29] Salobrar-Garcıa E., de Hoz R., Ramırez A.I., Lopez-Cuenca I., Rojas P., Vazirani R., Amarante C., et al.: Changes in visual function and retinal structure inthe progression of Alzheimer’s disease, PloS one, vol. 14(8), e0220535, 2019.
- [30] Sarma N.V.S.N., Gopi M.: Implementation of energy efficient clustering using firefly algorithm in wireless sensor networks. In: 2014 1st International Congress on Computer, Electronics, Electrical, and Communication Engineering (ICCEECE2014), vol. 59, IACSIT Press, 2014.
- [31] Scheunders P.: A genetic c-means clustering algorithm applied to color image quantization, Pattern Recognition, vol. 30(6), pp. 859–866, 1997.
- [32] Senthilnath J., Omkar S.N., Mani V.: Clustering using firefly algorithm: performance study, Swarm and Evolutionary Computation, vol. 1(3), pp. 164–171, 2011.
- [33] Sharma A., Sehgal S.: Image segmentation using firefly algorithm. In:2016 International Conference on Information Technology (InCITe) – the Next Generation IT Summit on the Theme – Internet of Things: Connect Your Worlds, pp. 99–102, IEEE, 2016.
- [34] Welch W.J.: Algorithmic complexity: three NP-hard problems in computational statistics, Journal of Statistical Computation and Simulation, vol. 15(1),pp. 17–25, 1982.
- [35] Wong M.T., He X., Yeh W.C.: Image clustering using particle swarm optimization. In: 2011 IEEE Congress of Evolutionary Computation (CEC), pp. 262–268, IEEE, 2011.
- [36] Xie H., Zhang L., Lim C.P., Yu Y., Liu C., Liu H., Walters J.: Improving K-means clustering with enhanced firefly algorithms, Applied Soft Computing, vol. 84, 105763, 2019.
- [37] Yang X.S.: Firefly algorithms for multimodal optimization. In: International Symposium on Stochastic Algorithms, pp. 169–178, Springer, 2009.
- [38] Yang X.S., He X.: Firefly algorithm: recent advances and applications, International Journal of Swarm Intelligence, vol. 1(1), pp. 36–50, 2013.
- [39] Zhou L., Li L.: Improvement of the Firefly-based K-means Clustering Algorithm. In: Proceedings of the 2018 International Conference on Data Science, pp. 157–162, 2018.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-471b0d34-561f-41e6-8434-91496af884e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.