PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of CO2 Fumigation and Nitrogen Addition on Soil Respiration in a Wetland Ecosystem : Experimental Approach with Top Open Chambers

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Soil respiration plays a crucial role in global carbon cycling of terrestrial ecosystems. Changes in atmospheric CO2 and nitrogen (N) addition across the globe are likely to affect soil respiration. However, the effects of elevated CO2, and N addition on soil respiration are not fully understood especially in wetland ecosystems. To evaluate the effects of atmospheric CO2 and N availability on soil respiration, a paired, nested manipulative in situ experiment was performed, using CO2 fumigation within Open-Top Chambers as the primary factor, and N (as NH4NO3) as the secondary factor in a temperate wetland in northeastern China in 2010 and 2011. CO2 fumigation significantly enhanced soil respiration, according to repeated-measures ANOVA, and the stimulatory effect of CO2 fumigation on soil respiration was sustained during the whole experimental period regardless of N addition. However, the positive soil respiration effect of N addition alone weakened over time. Moreover, there was a significant interaction between CO2 fumigation and N addition. Soil temperature explained 50-66% of the variation in soil respiration. Moreover, soil respiration was positively correlated with the root N content and litter decomposition rate. The results suggested that elevated CO2 concentrations will accelerate soil respiration and ecosystem carbon cycling, thus, limiting soil carbon sequestration, especially when coupled with increasing N deposition.
Rocznik
Strony
102--113
Opis fizyczny
Bibliogr. 44 poz., mapa, tab., wykr.
Twórcy
autor
  • Northeast Forestry University, Harbin, Heilongjiang, 150040, China
  • Institute of Natural resources and Ecology, Heilongjiang Academy of Sciences, Harbin, Heilongjiang, 150040, China
  • National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Harbin, Heilongjiang, 150040, China
  • Key Laboratory for Wetland and Restoration Ecology in Heilongjiang Province, Harbin, Heilongjiang, 150040, China
autor
  • Institute of Natural resources and Ecology, Heilongjiang Academy of Sciences, Harbin, Heilongjiang, 150040, China
  • National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Harbin, Heilongjiang, 150040, China
  • Key Laboratory for Wetland and Restoration Ecology in Heilongjiang Province, Harbin, Heilongjiang, 150040, China
autor
  • Institute of Natural resources and Ecology, Heilongjiang Academy of Sciences, Harbin, Heilongjiang, 150040, China
  • National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Harbin, Heilongjiang, 150040, China
  • Key Laboratory for Wetland and Restoration Ecology in Heilongjiang Province, Harbin, Heilongjiang, 150040, China
autor
  • Institute of Natural resources and Ecology, Heilongjiang Academy of Sciences, Harbin, Heilongjiang, 150040, China
  • National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Harbin, Heilongjiang, 150040, China
  • Key Laboratory for Wetland and Restoration Ecology in Heilongjiang Province, Harbin, Heilongjiang, 150040, China
autor
  • Institute of Natural resources and Ecology, Heilongjiang Academy of Sciences, Harbin, Heilongjiang, 150040, China
  • National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Harbin, Heilongjiang, 150040, China
  • Key Laboratory for Wetland and Restoration Ecology in Heilongjiang Province, Harbin, Heilongjiang, 150040, China
autor
  • Institute of Natural resources and Ecology, Heilongjiang Academy of Sciences, Harbin, Heilongjiang, 150040, China
  • National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Harbin, Heilongjiang, 150040, China
  • Key Laboratory for Wetland and Restoration Ecology in Heilongjiang Province, Harbin, Heilongjiang, 150040, China
Bibliografia
  • [1] Adair E. C., Reich P. B., Hobbie S. E., Knops J. H. 2009 – Interactive effects of time, CO2, N, and diversity on total belowground carbon allocation and ecosystem carbon storage in a grassland community – Ecosystems, 12: 1037-1052.
  • [2] Adair E., Reich P., Trost J., Hobbie S. 2011 – Elevated CO2 stimulates grassland soil respiration by increasing carbon inputs rather than by enhancing soil moisture – Global Change Biol. 17: 3546-3563.
  • [3] Ainsworth E. A., Long S. P. 2005 – What have we learned from 15 years of free-air CO, enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2 – New Phytol. 165: 351-372.
  • [4] Ainsworth E. A., Rogers A. 2007 – The response of photosynthesis and stomatal conductance to rising CO2 mechanisms and environmental interactions – Plant Cell Environ. 30: 258-270.
  • [5] Allison S., Czimczik C., Treseder K. 2008 – Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest – Global Change Biol. 14: 1-13.
  • [6] Boone R. D., Nadelhoffer K. J., Canary J. D., Kaye J. P. 1998 – Roots exert a strong influence on the temperature sensitivity of soil respiration – Nature, 396: 570-572.
  • [7] Bowden R. D., Davidson E., Savage K., Arabiaa C., Steudler P. 2004 – Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest – Forest Ecol. Manage. 196: 43-56.
  • [8] Burton A. J., Pregitzer K. S., Ruess R. W., Hendrick R. L., Allen M. F. 2002 – Root respiration in North American forests: effects of nitrogen concentration and temperature across biomes – Oecologia, 131: 559-568.
  • [9] Callaway R. M., DeLucia E. H., Thomas E. M., Schlesinger W. H. 1994 – Compensatory responses of CO2 exchange and biomass allocation and their effects on the relative growth rate of ponderosa pine in different CO2 and temperature regimes – Oecologia, 98: 159-166.
  • [10] Craine J. M., Wedin D. A., Reich P. B. 2001 – The response of soil CO2 flux to changes in atmospheric CO2, nitrogen supply and plant diversity – Global Change Biol. 7: 947-953.
  • [11] Deng Q., Cheng X. L., Zhou G. Y., Liu J. X., Liu S. R., Zhang Q. F., Zhang D. Q. 2013 – Seasonal responses of soil respiration to elevated CO2 and N addition in young subtropical forest ecosystems in southern China – Ecol. Eng. 61: 65-73.
  • [12] Deng Q., Zhou G., Liu J., Liu S., Duan H., Zhang D. 2010 – Responses of soil respiration to elevated carbon dioxide and nitrogen addition in young subtropical forest ecosystems in China – Biogeosciences, 7: 315-328.
  • [13] Ferrati R., Canziani G. A., Moreno D. R. 2005 – Estero del Ibera: hydrometeorological and hydrolocical characterization – Ecol. Model. 186: 3-15.
  • [14] Galloway J. N., Townsend A. R., Erisman J. W., Bekunda M., Cai Z. C. 2008 – Transformation of the nitrogen cycle: recent trends, questions, and potential solutions – Science, 320: 889-892.
  • [15] Gruber N., Galloway J. N. 2008 – An earthsystem perspective of the global nitrogen cycle – Nature, 451: 293-296.
  • [16] IPCC 2001 – Climate Change 2001, the Science of Climate Change – Cambridge University Press, Cambridge, UK and New York, USA.
  • [17] IPCC 2007 – Climatic change 2007, the physical science basis – Cambridge University Press, Cambridge, UK and New York, USA.
  • [18] Janssens I. A., Dieleman W., Luyssaert S., Subke J. A., Reichstein M. 2010 – Reduction of forest soil respiration in response to nitrogen deposition – Nature, 3: 315-322.
  • [19] Jin X. B., Bai J. H., Zhou Y. K. 2010 – Temperature sensitivity of soil respiration is affected by nitrogen fertilization and land use – Acta Agr. Scand. 60: 480-484.
  • [20] Kemmitt S. J., Wright D., Goulding K. W., Jones D. L. 2006 – PH regulation of carbon and nitrogen dynamics in two agricultural soil – Soil Biol. Biochem. 38: 898-911.
  • [21] Kirschbaum M. F. 2000 – Will changes in soil organic carbon act as a positive or negative feedback on global warming? – Biogeochem. 48: 21-51.
  • [22] Kou T. J., Zhu J. G., Xie Z. B., Hasegawa T., Heiduk K. 2007 – Effect of elevated atmospheric CO2 concentration on soil and root respiration in winter wheat by using a respiration partitioning chamber – Plant Soil. 299: 237-249.
  • [23] Leakey A. D., Ainsworth E. A., Bernacchi C. J., Rogers A., Long S. P., Ort D. R. 2009 – Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE – J. Exp. Bot. 60: 2859-2876.
  • [24] Liu D. Y., Song C. C., Huang J. Y. 2008 – Effects of exogenous nitrogen supply on photosynthetic characteristics and carbon sequestration potential of Calamagrostisangustifolia in freshwater wetlands – Acta Sci. Circums. 28: 305-312.
  • [25] Liu X. J., Zang Y., Han W. X., Tang A. T., Shen J. L., Cui Z. L., Vitousek P., Erisman J. W., Goulding K., Christie P. 2013 – Enhanced nitrogen deposition over China – Nature, doi: 10. 1038/nature 11917.
  • [26] Lovelock C. E. 2008 – Soil respiration and belowground carbon allocation in mangrove forests – Ecosystems, 11: 342-354.
  • [27] Mo J. M., Brown S., Xue J. H., Fang Y. T, Li Z. A. 2006 – Response of litter decomposition to simulated N deposition in disturbed, rehabilitated and mature forests in subtropical China – Plant Soil. 282: 135-151.
  • [28] Niklaus P. A., Spinnler D., Kornerb C. 1998 – Soil moisture dynamics of calcareous grassland under elevated CO2 – Oecologia, 117: 201-208.
  • [29] Pendall E., Bridgham S., Hanson P. J., Hungate B., Kicklighter D. W., Johnson D. W., Law B. E., Luo Y. Q., Megonigal J. P., Olsrud M., Ryan M. G., Wan S. Q. 2004 – Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models – New Phytol. 162: 311-322.
  • [30] Peng Q., Dong Y. S., Qi Y. C., Xiao S. S., He Y. T., Ma T. 2011 – Effects of nitrogen fertilization on soil respiration in temperate grassland in Inner Mongolia – China. Environ. Earth Sci. 62: 1163-1171.
  • [31] Phillips R. P., Fahey T. J. 2007 – Fertilization effects on fine root biomass, rhizosphere microbes and respiratory fluxes in hardwood forest soils – New Phytol. 176: 655-664.
  • [32] Pregitzer K. S., Burton A. J., King J. S., Zak D. R. 2008 – Soil respiration, root biomass, and root turnover following longterm exposure of northern forests to elevated atmospheric CO2 and tropospheric O3 – New Phytol. 180: 153-161.
  • [33] Raich J. W., Potter C. S. 1995 – Global patterns of carbon dioxide emissions from soils – Global Biogeochem. Cycl. 9: 23-36.
  • [34] Raich J. W., Potter C. S., Bhagawati D. 2002 – Interannual variability in global soil respiration, 1980-94 – Global Change Biol. 8: 800-812.
  • [35] Ramirez K. S., Craine J. M., Fierer N. 2010 v Nitrogen fertilization inhibits soil microbial respiration regardless of the form of nitrogen applied – Soil Biol. Biochem. 422: 2336-2338.
  • [36] Reich P. B. 2009 – Elevated CO2 reduces losses of plant diversity caused by nitrogen deposition – Science, 326: 1399-1402.
  • [37] Tingey D. T., Lee E. H., Waschmann R., Johnson M. G., Rygiewicz P. T. 2006 – Does soil CO2 efflux acclimatize to elevated temperature and CO2 during long-term treatment of Douglas-fir seedlings? – New Phytol. 170: 107-118.
  • [38] Trumbore S. 2006 – Carbon respired by terrestrial ecosystems recent progress and challenges – Global Change Biol. 12: 141-153.
  • [39] Wan S. Q., Richard J. N., Joanne L., Jake F. W. 2007 – Responses of soil respiration to elevated CO2 air warming, and changing soil water availability in a model oldfield grassland – Global Change Biol. 13: 2411-2424.
  • [40] Wang J. B., Zhu T. C., Ni H. W., Zhong H. X., Fu X. L., Wang J. F. 2013 – Effects of Elevated CO2 and Nitrogen Deposition on Ecosystem Carbon Fluxes on the Sanjiang Plain Wetland in Northeast China – PLoS ONE, 8 (6): e66563. doi: 10.1371/journal.pone.0066563.
  • [41] Wigand C., Brennan P., Stolt M., Rybal S. 2009 – Soil respiration rates in coastal wetlande subject to increasing watershed nitrogen nitrogen loads in southern New England – USA Wetlands, 29: 952-963.
  • [42] Yuen S. H., Pollard A. G. 1953 – Determination of nitrogen in soil and plant materials: use of boric acid in the microKjeldahl method – J. Sci. Food Agr. 4: 490-496.
  • [43] Zhao G. Y., Liu J. S., Wang Y. 2011 – Effects of elevated at mospheric CO2 concentration and nitrogen addition on the growth of Calamagrostis angustifolia in Sanjiang Plain freshwater wetland – Chin. J. Appl. Ecol. 22: 1653-1658.
  • [44] Zhou Y. M., Li M.E. E., Cheng X. B., Wang C. G., Fan A. N. 2010 – Soil respiration in Relation to Photosynthesis of Quercusmongolica Trees at Elevated CO2 – PLoS ONE, 5: 1-8.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-471a1331-399e-4602-bd9c-8161e7125386
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.