PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Linearized asymptotic stability for nabla Riemann-Liouville fractional difference equation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we present a theorem about stability of nonlinear fractional difference equation with Riemann-Liouvile difference operator. The result is a version of classical theorem on linear approximation and to derive them, we prove the variation of constants formula for nabla Riemann-Liouville fractional difference equations. We also present some results concerning the existence and uniqueness of the equation under consideration.
Rocznik
Strony
569--588
Opis fizyczny
Bibliogr. 60 poz., wzory
Twórcy
autor
  • Center for Applied Mathematics and Informatics, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi, Vietnam
autor
  • Department of Automatic Control and Robotics, Silesian University of Technology, 44-100 Gliwice, Poland
  • Department of Automatic Control and Robotics, Silesian University of Technology, 44-100 Gliwice, Poland
Bibliografia
  • [1] A. Lyapunov: Collected works in three volumes. Publishing House of the Academy of Sciences of the USSR, Moscow, Leningrad, 1954.
  • [2] N. Izobov: Introduction to the Theory of Lyapunov Exponents. BGU, Minsk, 2006.
  • [3] A. Czornik and A. Nawrat: Stability by the linear approximation for discrete equations. Linear Algebra and its Applications, 435(4), (2011), 742-750. DOI: 10.1016/j.laa.2011.02.020
  • [4] J.T. Machado, V. Kiryakova and F. Mainardi: Recent history of fractional calculus. Communications in Nonlinear Science and Numerical Simulation, 16(3), (2011), 1140-1153. DOI: 10.1016/j.cnsns.2010.05.027
  • [5] D. Sierociuk, A. Dzieliński, G. Sarwas, I. Petras, I. Podlubny and T. Skovranek: Modelling heat transfer in heterogeneous media using fractional calculus. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1990), (2013), 20120146. DOI: 10.1098/rsta.2012.0146
  • [6] A. Babiarz, A. Czornik, J. Klamka and M. Niezabitowski: Theory and Applications of Non-integer Order Systems. Lecture Notes Electrical Engineering, 407, Springer, 2017.
  • [7] I. Petras: Stability of fractional-order systems with rational orders. Fractional Calculus and Applied Analysis, 12(3), (2009), 269-298. DOI: 10.48550/arXiv.0811.4102
  • [8] T. Kaczorek: Stability of interval positive fractional discrete-time linear systems. International Journal of Applied Mathematics and Computer Science, 28(3), (2018), 451-456. DOI: 10.2478/amcs-2018-0034
  • [9] R. Abu-Saris and Q. Al-Mdallal: On the asymptotic stability of linear system of fractional-order difference equations. Fractional Calculus and Applied Analysis, 16(3), (2013), 613-629. DOI: 10.2478/s13540-013-0039-2
  • [10] Ł. Sajewski: Minimum energy control of descriptor fractional discrete-time linear systems with two different fractional orders. International Journal of Applied Mathematics and Computer Science, 27(1), (2017), 33-41. DOI: 10.1515/amcs-2017-0003
  • [11] R. Mabel Lizzy and K. Balachandran: Boundary controllability of nonlinear stochastic fractional systems in Hilbert spaces. International Journal of Applied Mathematics and Computer Science, 28(1), (2018), 123-133. DOI: 10.2478/amcs-2018-0009
  • [12] F. Meral, T. Royston and R. Magin: Fractional calculus in viscoelasticity: an experimental study. Communications in Nonlinear Science and Numerical Simulation, 15(4), (2010), 939-945. DOI: 10.1016/j.cnsns.2009.05.004
  • [13] W. Elloumi, D. Mehdi and M. Chaabane: Robust controlled positive delayed systems with interval parameter uncertainties: a delay uniform decomposition approach. International Journal of Applied Mathematics and Computer Science, 28(3), (2018), 441-450. DOI: 10.2478/amcs-2018-0033
  • [14] A. Barkalov, L. Titarenko and K. Mielcarek: Hardware reduction for LUT-based Mealy FSMs. International Journal of Applied Mathematics and Computer Science, 28(3), (2018), 595-607. DOI: 10.2478/amcs-2018-0046
  • [15] T. Abdeljawad: On Riemann and Caputo fractional differences. Computers & Mathematics with Applications, 62(3), (2011), 1602-1611. DOI: 10.1016/j.camwa.2011.03.036
  • [16] F. Atici and P. Eloe: Initial value problems in discrete fractional calculus. Proceedings of the American Mathematical Society, 137(3), (2009), 981-989. DOI: 10.1090/S0002-9939-08-09626-3
  • [17] F. M. Atici and P. Eloe: Discrete fractional calculus with the nabla operator. Electronic Journal of Qualitative Theory of Differential Equations, 3(1-12), [electronic only], (2009). DOI: 10.14232/ejqtde.2009.4.3
  • [18] D. Matignon: Stability results for fractional differential equations with applications to control processing. Computational Engineering in Systems Applications, 2 1996, 963-968.
  • [19] Y. Wei, Y. Chen, S. Cheng and Y. Wang: Completeness on the stability criterion of fractional order LTI systems. Fractional Calculus and Applied Analysis, 20(1), (2017), 159-172. DOI: 10.1515/fca-2017-0008
  • [20] B.B. Alagoz: Hurwitz stability analysis of fractional order LTI systems according to principal characteristic equations. ISA Transactions, 70 (2017), 7-15. DOI: 10.1016/j.isatra.2017.06.005
  • [21] Y. Li, Y. Chen and I. Podlubny: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica, 45(8), (2009), 1965-1969. DOI: 10.1016/j.automatica.2009.04.003
  • [22] Y. Li, Y. Chen and I. Podlubny: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Computers & Mathematics with Applications, 59(5), (2010), 1810-1821. DOI: 10.1016/j.camwa.2009.08.019
  • [23] J.-C. Trigeassou, N. Maamri, J. Sabatier and A. Oustaloup: A Lyapunov approach to the stability of fractional differential equations. Signal Processing, 91(3), (2011), 437-445. DOI: 10.1016/j.sigpro.2010.04.024
  • [24] D. Baleanu, G.-C. Wu, Y.-R. Bai and F.-L. Chen: Stability analysis of Caputo-like discrete fractional systems. Communications in Nonlinear Science and Numerical Simulation, 48 (2017), 520-530. DOI: 10.1016/j.cnsns.2017.01.002
  • [25] N. Aguila-Camacho, M. A. Duarte-Mermoud and J. A. Gallegos: Lyapunov functions for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 19(9), (2014), 2951-2957. DOI: 10.1016/j.cnsns.2014.01.022
  • [26] G.-C. Wu, D. Baleanu and W.-H. Luo: Lyapunov functions for Riemann-Liouville-like fractional difference equations. Applied Mathematics and Computation, 314 (2017), 228-236. DOI: 10.1016/j.amc.2017.06.019
  • [27] M. Wyrwas and D. Mozyrska: On Mittag-Leffler stability of fractional order difference systems. In: Advances in Modelling and Control of Non-integer-Order Systems, Springer, 2015, 209-220. DOI: 10.1007/978-3-319-09900-2_19
  • [28] Y. Wei, Y. Chen, T. Liu and Y. Wang: Lyapunov functions for nabla discrete fractional order systems. ISA Transactions, 88 (2019), 82-90. DOI: 10.1016/j.isatra.2018.12.016
  • [29] F. Chen: Fixed points and asymptotic stability of nonlinear fractional difference equations. Electronic Journal of Qualitative Theory of Differential Equations, 2011(39), (2011), 1-18. DOI: 10.14232/ejqtde.2011.1.39
  • [30] J. Čermák, T. Kisela and L. Nechvátal: Stability regions for linear fractional differentia systems and their discretizations. Applied Mathematics and Computation, 219(12), (2013), 7012-7022. DOI: 10.1016/j.amc.2012.12.019
  • [31] B. Jia, L. Erbe and A. Peterson: Asymptotic behavior of solutions of fractional nabla q-difference equations. Georgian Mathematical Journal, 26(1), (2019), 21-28. DOI: 10.1515/gmj-2017-0030
  • [32] F.M. Atici and P.W. Eloe: Linear systems of fractional nabla difference equations. The Rocky Mountain Journal of Mathematics, bf 41(2), (2011), 353-370. DOI: 10.1216/RMJ-2011-41-2-353
  • [33] D. Mozyrska and M. Wyrwas: Stability by linear approximation and the relation between the stability of difference and differential fractional systems. Mathematical Methods in the Applied Sciences, 40(11), (2017), 4080-4091. DOI: 10.1002/mma.4287
  • [34] Y. Wei, Y. Wei, Y. Chen and Y. Wang: Mittag-Leffler stability of nabla discrete fractional-order dynamic systems. Nonlinear Dynamics, 101(1), (2020), 407-417. DOI: 10.1007/s11071-020-05776-3
  • [35] Y. Wei, Y. Chen, T. Liu and Y. Wang: Lyapunov functions for nabla discrete fractional order systems. ISA Transactions, 88 (2019), 82-90. DOI: 10.1016/j.isatra.2018.12.016
  • [36] F. Chen and Z. Liu: Asymptotic stability results for nonlinear fractional difference equations. Journal of Applied Mathematics, 2012(1), (2012). DOI: 10.1155/2012/879657
  • [37] F. Jarad, T. Abdeljawad, D. Baleanu and K. Biçen: On the stability of some discrete fractional nonautonomous systems. Abstract and Applied Analysis, 2012(1-12), (2012). DOI: 10.1155/2012/476581
  • [38] M. Wyrwas, E. Pawluszewicz and E. Girejko: Stability of nonlinear ℎ-difference systems with 𝑛 fractional orders. Kybernetika, 51(1), (2015), 112-136. DOI: 10.14736/kyb-2015-1-0112
  • [39] J. Čermák, I. Győri and L. Nechvátal: On explicit stability conditions for a linear fractional difference system. Fractional Calculus and Applied Analysis, 18(3), (2015), 651-672. DOI: 10.1515/fca-2015-0040
  • [40] R. Abu-Saris and Q. Al-Mdallal: On the asymptotic stability of linear system of fractional-order difference equations. Fractional Calculus and Applied Analysis, 16(3), (2013), 613-629. DOI: 10.2478/s13540-013-0039-2
  • [41] D. Mozyrska and M. Wyrwas: Stability by linear approximation and the relation between the stability of difference and differential fractional systems. Mathematical Methods in the Applied Sciences, 40(11), (2017), 4080-4091. DOI: 10.1002/mma.4287
  • [42] J. Čermák and L. Nechvátal: On a problem of linearized stability for fractional difference equations. Nonlinear Dynamics, 104(2), (2021), 1253-1267. DOI: 10.1007/s11071-021-06372-9
  • [43] N.D. Cong, T.S. Doan, S. Siegmund and H. Tuan: Linearized asymptotic stability for fractional differential equations. Electronic Journal of Qualitative Theory of Differential Equations, 39(1-13), (2016). DOI: 10.48550/arXiv.1512.04989
  • [44] J. Hein, Z. McCarthy, N. Gaswick, B. McKain and K. Speer: Laplace transforms for the nabla-difference operator. Panamerican Mathematical Journal, 21(3), (2011), 79-97.
  • [45] J.J. Mohan and G. Deekshitulu: Solutions of nabla fractional difference equations using N-transforms. Communications in Mathematics and Statistics, 2(1), (2014), 1-16. DOI: 10.1007/s40304-014-0027-9
  • [46] J.J. Mohan, N. Shobanadevi and G. Deekshitulu: Stability of nonlinear nabla fractional difference equations using fixed point theorems. Italian Journal of Pure and Applied Mathematics, 32 (2014), 165-184.
  • [47] J.M. Jonnalagadda: Analysis of nonlinear fractional nabla difference equations. International Journal of Analysis and Applications, 7(1), (2015), 79-95. DOI: 10.1504/I-JDSDE.2015.069894
  • [48] J. Jonnalagadda: Analysis of a system of nonlinear fractional nabla difference equations. International Journal of Dynamical Systems and Differential Equations, 5(2), (2015), 149-174. DOI: 10.1504/IJDSDE.2015.069894
  • [49] A. Kilbas, H.M. Srivastava and J.J. Trujillo (Eds.): Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 2006.
  • [50] E. Kreyszig: Introductory Functional Analysis with Applications. 1 Wiley, New York, 1978.
  • [51] A. Nagai: Discrete Mittag-Leffler function and its applications. Publications of the Research Institute for Mathematical Sciences, Kyoto University, 1302 (2003), 1-20.
  • [52] K.S. Miller and B. Ross: Fractional difference calculus. Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and Their Applications, Nihon University, Koriyama, (1988), 139-152.
  • [53] I. Podlubny: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications. Elsevier, 1998.
  • [54] N.D. Cong, T. S. Doan, S. Siegmund and H. Tuan: Linearized asymptotic stability for fractional differential equations. Electronic Journal of Qualitative Theory of Differential Equations, 39(1-13), (2016). DOI: 10.48550/arXiv.1512.04989
  • [55] L. Nechvátal: On asymptotics of discrete mittag-leffler function. Mathematica Bohemica, 139(4), (2014), 667-675.
  • [56] S.G. Krantz and S.G. Krantz: Handbook of Complex Variables. Springer Science & Business Media, 1999.
  • [57] R.L Graham: Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley, 1994.
  • [58] A. Czornik, P.T. Anh, A. Babiarz and S. Siegmund: Asymptotic Behavior of Discrete Fractional Systems. In: Fractional Dynamical Systems: Methods, Algorithms and Applications, Springer, 2022, 135-173.
  • [59] J. Čermák, T. Kisela and L. Nechvátal: Stability regions for linear fractional differentia systems and their discretizations. Applied Mathematics and Computation, 219(12), (2013), 7012-7022. DOI: 10.1016/j.amc.2012.12.019
  • [60] P. The Anh, A. Babiarz, A. Czornik, M. Niezabitowski and S. Siegmund: Some results on linear nabla Riemann-Liouville fractional difference equations. Mathematical Methods in the Applied Sciences, 43(13), (2020), 7815-7824. DOI: 10.1002/mma.6337
Uwagi
The work of Pham The Anh is supported by Vietnam National Foundation for Science and Technology Development under grant number 101.02-2023.32. The research of the second and third authors were financed by the grant from Silesian University of Technology - subsidy for maintaining and developing the research potential in 2024.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-471781b1-a440-4dba-a96b-2e15a8ecdd9d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.