PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Global attractivity of a higher order nonlinear difference equation with unimodal terms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper, we study the asymptotic behavior of the following higher order nonlinear difference equation with unimodal terms x(n + 1) = ax(n) + bx(n)g(x(n)) + cx(n − k)g(x(n − k)), n = 0, 1, . . . , where a, b and c are constants with 0 < a < 1, 0 ≤ b < 1, 0 ≤ c < 1 and a + b + c = 1, g ∈ C[[0,∞), [0,∞)] is decreasing, and k is a positive integer. We obtain some new sufficient conditions for the global attractivity of positive solutions of the equation. Applications to some population models are also given.
Rocznik
Strony
131--143
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
  • Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762, USA
autor
  • Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762, USA
Bibliografia
  • [1] A. Almaslokh, C. Qian, On global attractivity of a higher order difference equation and its applications, Electron. J. Qual. Theory Diff. Equ. 2022, Paper no. 2, 14 pp.
  • [2] Y. Chow, S.R.-J. Jang, N. Yeh, Dynamics of a population in two patches with dispersal, J. Difference Equ. Appl. 24 (2018), no. 4, 543–563.
  • [3] H.A. El-Morshedy, E. Liz, Convergence to equilibria in discrete population models, J. Difference Equ. Appl. 11 (2005), no. 2, 117–131.
  • [4] J.R. Graef, C. Qian, Global stability in a nonlinear difference equation, J. Differ. Equations Appl. 5 (1999), no. 3, 251–270.
  • [5] J.R. Graef, C. Qian, Global attractivity of the equilibrium of a nonlinear difference equation, Czechoslovak Math. J. 52 (2002), no. 4, 757–769.
  • [6] J.R. Graef, C. Qian, Global attractivity in a nonlinear difference equation and its application, Dynam. Systems Appl. 15 (2006), no. 1, 89-96.
  • [7] Q. He, T. Sun, H. Xi, Dynamics of a family of nonlinear delay difference equations, Abstr. Appl. Anal. 2013, Art. ID 456530, 4 pp.
  • [8] W.S. Gurney, S.P. Blythe, R.M. Nisbet, Nicholson’s blowflies revisited, Nature 287 (1980), 17–21.
  • [9] A.F. Ivanov, On global stability in a nonlinear discrete model, Nonlinear Anal. 23 (1994), no. 11, 1383–1389.
  • [10] G. Karakostas, Ch.G. Philos, Y.G. Sficas, The dynamics of some disrete population models, Nonlinear Anal. 17 (1991), no. 11, 1069–1084.
  • [11] V.L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
  • [12] T. Newman, J. Antonivics, H. Wilbur, Population dynamics with a refuge: fractal basins and the suppression of chaos, Throret. Pop. Biol. 62 (2002), 121–128.
  • [13] A.J. Nicholson, An outline of the dynamics of animal populations, Austral. J. Zool. 2 (1954), 9–25.
  • [14] C. Qian, Global attractivity of solutions of nonlinear delay differential equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13B (2006), suppl., 25–37.
  • [15] C. Qian, Global attractivity of periodic solutions in a higher order difference equation, Appl. Math. Lett. 26 (2013), no. 5, 578–583.
  • [16] C. Qian, Global attractivity in a nonlinear difference equation and applications to a biological model, Int. J. Difference Equ. 9 (2014), no. 2, 233–242.
  • [17] C. Qian, Global attractivity in a nonlinear difference equation and applications to discrete population, Dynam. Systems Appl. 23 (2014), no. 4, 575–589.
  • [18] S. Stević, A global convergence results with applications to periodic solutions, Indian J. Pure Appl. Math. 33 (2002), no. 1, 45–53.
  • [19] S. Stević, Asymptotic behavior of a sequence defined by iteration with applications, Colloq. Math. 93 (2002), no. 2, 267–276.
  • [20] S. Stević, Asymptotic behavior of a nonlinear difference equation, Indian J. Pure Appl. Math. 34 (2003), no. 12, 1681–1687.
  • [21] S. Stević, Asymptotic behavior of a class of nonlinear difference equations, Discrete Dyn. Nat. Soc. 2006, Art. ID 47156, 10 pp.
  • [22] S. Stević, B. Iričanin, W. Kosmala, Z. Šmarda, Existence and global attractivity of periodic solutions to some classes of difference equations, Filomat 33 (2019), no. 10, 3187–3201.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-471592ad-d716-435d-891a-76b3486251ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.