PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A multi-analytical approach for the analysis of cation distribution in a aluminoceladonite structure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper cation arrangement in two samples of aluminoceladonite, emerald green and dark-green were studied by Mössbauer, Raman and X-ray photoelectron spectroscopies. The X-ray photoelectron spectroscopy (XPS) spectra obtained in the region of the Si2p, Al2p, Fe2p, K2p, and O1s core levels provided information, for the first time highlighting a route to identify the position of Si, Al, K, and Fe cations in a structure of layered silicates. The XPS analysis showed the presence of Al in tetrahedral and octahedral coordination while the K2p line indicated the possibility of K+ substitution by other cations in interlayer sites. Mössbauer spectroscopy provided information about crystal chemistry with respect to the local electronic and geometric environment around the Fe atom and to distortions of the polyhedra. It turned out that iron was located mostly in the cis-octahedra position wherein about 75% of iron appeared in the form of Fe3+. The most preferred cation combinations around Fe corresponded to 3Fe3+ ions and MgFe2+Fe3+/2MgFe3+. Raman spectroscopy illustrated aluminium substitution in silicon and iron positions wherein the concentration of the aluminium determined the degree of structural distortion within the layered system. These isomorphic substitutions implied a typical band arrangement in the hydroxyl region, which has not been observed in celadonites so far.
Rocznik
Strony
353--368
Opis fizyczny
Bibliogr. 73 poz., rys., tab.
Twórcy
  • Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
  • Institute of Material Science, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
autor
  • Faculty of Earth Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
  • Faculty of Earth Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
  • Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
Bibliografia
  • 1. Bailey. S. 1980. Summary of recommendations of AIPEA nomenclature committee on clay minerals. American Mineralogist, 65, l–7.
  • 2. Ballet, O. and Amthauer, G. 1986. Room-temperature Mössbauer study of the EFG tensor at the iron sites in sheet silicates. Journal of Physics C: Solid State Physics, 19, 7099–7112.
  • 3. Barr. T., Seal, S., Wozniak, K. and Klinowaki J. 1997. ESCA studies of the coordination state of aluminum in oxide environments. Journal of the Chemical Society, Faraday Transactions, 93, 181–186.
  • 4. Besson. G. and Drits, V.A. 1997a. Refined relationship between chemical composition of dioctahedral fine-grained mica minerals and their infrared spectra within the OH stretching region. Part 1. Identification of the OH stretching vibrations. Clays and Clay Minerals, 45, 158–169.
  • 5. Besson, G. and Drits, V.A. 1997b. Refined relationship between chemical composition of dioctahedral fine-grained mica minerals and their infrared spectra within the OH stretching region. Part 2. Main factors affecting OH vibrations and quantitative analysis. Clays and Clay Minerals, 45, 170–183.
  • 6. Bhattacharyya, K. 1993. XPS study of mica surfaces. Journal of Electron Spectroscopy and Related Phenomena, 63, 289– 306.
  • 7. Biino, G. and Gröning, P. 1998. Cleavage mechanism and surface chemical characterization of phengitic muscovite and muscovite as constrained by X-ray photoelectron spectroscopy. Physics and Chemistry of Minerals, 25, 168–181.
  • 8. Bishop, J., Michalski, J. and Carter, J. 2017. Remote Detection of Clay Minerals. In book: Infrared and Raman spectroscopes of Clay Minerals, 84, 82–514.
  • 9. Brigatti, M., Frigieri. P. and Poppi, L. 1998. Crystal chemistry of Mg-, Fe-bearing muscovites-2M1. American Mineralogist, 83, 775–785.
  • 10. Brigatti, M., Galan, E. and Theng, B. 2013. Structure and mineralogy of clay minerals. Chapter 2, In: Bergaya F. and Lagaly G. (Eds.), Handbook of Clay Science, Part A: Fundamentals, second ed, 21–82. Elsevier; The Netherlands.
  • 11. Bowen, L., DeGrave, E., Reid, D,. Graham, R. and Edinger, S. 1989. Mössbauer sudy of a California Desert celadonite and its pedogeniclly-related smectite. Physisc and Chemistry of Minerals, 16, 697–703.
  • 12. Czaja, M., Mariola Kądziołka Gaweł, M., Konefał, A., Sitko, R., Teper, E., Mazurak, Z. and Sachanbiński, M. 2017. The Mössbauer spectra of prasiolite and amethyst crystals from Poland. Physics and Chemistry of Minerals, 44 (5), 365–375.
  • 13. Dainyak, L. and Drits, V. 1987 Interpretation of Mössbauer spectra of nontronite, celadonite, and glauconite. Clays and Clay Minerals, 35, 363–372.
  • 14. Dainyak, L., Drits V. and Lindgreen, H. 2004. Computer simulation of octahedral cation distribution and interpretation of the Mössbauer Fe2+ components in dioctahedral trans-vacant micas. European Journal of Mineralogy, 16, 451–468.
  • 15. Dainyak, L., Zviagina, B., Rusakov, V and Drits, V. 2006. Interpretation of the nontronite-dehydroxylate Mössbauer spectrum using EFG calculations. European Journal of Mineralogy, 18, 753–764.
  • 16. DeGrave, E., Vandenbruwaene, J. and van Bockstael, M. 1987 57Fe Mössbauer spectroscopic analysis of chlorite. Physics and Chemistry of Minerals, 15, 173–180.
  • 17. Doniach, S. and Sunjic, M. 1970. Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. Journal of Physics C: Solid State Physics, 3, 285–291.
  • 18. Drits, V., Dainyak, G., Mulle,r F., Besson, G. and Manceaut, A. 1997. Isomorphous cation distribution in celadonites, glauconites and Fe-illites determined by infrared, Mössbauer and Exafs spectroscopies. Clay Minerals, 32, 153–179.
  • 19. Drits, V., McCarty, D. and Zviagina, B. 2006. Crystal-chemical factors responsible for the distribution of octahedral cations over trans- and cis-sites in dioctahedral 2:1 layer silicates. Clays and Clay Minerals, 54, 131–152.
  • 20. Drits, V., Zviagina, B., McCarty, D. and Salyn, A. 2010. Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite. American Mineralogist, 95, 348–361.
  • 21. Dyar, M.D. 1984 Precision and interlabolatory reproducibility of measurments of the Mössbauer effect in minerals. American Mineralogist, 69, 1127–1144.
  • 22. Dyar, M.D. 2002. Optical and Mössbauer Spectroscopy of Iron in Micas. Reviews in Mineralogy and Geochemistry, 46 (1), 313–349.
  • 23. Dyar, M.D., Agresti, D., Schaefer, M., Grant, C. and Sklute, E. 2006. Mössbauer spectroscopy of earth and planetary materials. Annual Review of Earth and Planetary Sciences, 34 (1), 83–125.
  • 24. Elmi, C., Brigatti, M., Guggenheim, S., Pasquali, L., Montecchi, M. and Nannarone, S. 2014 Crystal chemistry and surface configurations of two polylithionite-1M crystals. American Mineralogist, 99, 2049–2059.
  • 25. Elmi, C., Guggenheim, S. and Gier R. 2016. Surface crystal chemistry of phyllosilicates using X-Ray photoelectron spectroscopy: A Review. Clays and Clay Minerals, 64, 537–551.
  • 26. Farmer, V. 1974. The layered silicates In: Farmer, V.C. (Ed.), The infrared spectra of minerals, 331–363. The Mineralogical Society Monograph 4; London.
  • 27. Foster, M. 1960. Layer charge relations in the dioctahedral and trioctahedral micas. American Mineralogist, 45, 383–398.
  • 28. Gates, W. 2005. Infrared spectroscopy and the chemistry of dioctahedral smectites. In: Klopproge, J.T. (Ed.), The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides, CMS Workshop Lectures, vol. 13, 125–168. The Clay Mineral Society; Aurora, CO.
  • 29. Gates, W. 2008. Cation Mass-valence sum (CM-VS) approach to assigning OH - bending bands in dioctahedral smectites. Clays and Clay Minerals, 56, 10–22.
  • 30. Goodman, B. 1976. The Mössbauer spectrum of a ferrian muscovite and its implications in the assignment of sites in dioctahedral micas. Mineralogical Magazine, 40, 513–517.
  • 31. Heller-Kallai, L. and Rozenson. I. 1981. The use of Mössbauer spectroscopy of iron in clay mineralogy. Physics and Chemistry of Minerals, 7, 223–238.
  • 32. Hesse, J. and Riibartsch, A. 1974. Model independent evaluation of overlapped Mössbauer spectra. Journal of Physics E: Scientific Instruments, 7, 526–532.
  • 33. Ihekweme, G., Shondo, J., Orisekeh, K., Kalu-Uka, G., Chukwujike Nwuzor, I. and Onwualu, P. 2020. Characterization of certain Nigerian clay minerals for water purification and other industrial applications. Heliyon, 6, e03783.
  • 34. Kaky, K., Şakar, E., Akbaba, U., Kasapoğlu, A., Sayyed, M., Gür, E., Baki, S. and Mahdi, M. 2019. X-ray photoelectron spectroscopy (XPS) and gamma-ray shielding investigation of boro-silicate glasses contained alkali/alkaline modifier. Results in Physics, 14, 102438.
  • 35. Kloprogge, J. 2017. Raman spectroscopy of clay minerals. In: Gates, W.P., Kloprogge, J.T., Madejova, J. and Bergaya, F. (Eds), Infrared and Raman Spectroscopies of Clay Minerals, 150–199. Elsevier; Amsterdam.
  • 36. Kloprogge, J. and Wood, B. 2018. X-ray photoelectron spectroscopy and Raman microscopy of a ferroan platinum crystal from the Kondyor Massif, Russian Far East. Spectroscopy Letters, 21, 43–48.
  • 37. Li, G., Peacor, D., Coombs, D. and Kawachi, Y. 1997. Solid solution in the celadonite family: the new minerals ferroceladonite, K2Fe2+Fe3+Si8O20(OH)4, and ferroaluminoceladonite, K2Fe2+Al2Si8O20(OH)4. American Mineralogist, 82, 503–511.
  • 38. Li, H., Zhang, L. and Christy, A. 2011. The correlation between Raman spectra and the mineral composition of muscovite and phengite. In: Dobrzhinetskaya, L.F., Faryad, S.W., Wallis, S. and Cuthbert, S. (Eds), Ultrahigh-Pressure Metamorphism, 187–212. Elsevier; Amsterdam.
  • 39. Liu, Z. and Brown, N. 1998. XPS characterization of mica surfaces processed using a radio-frequency (rf) argon plasma. Journal of Physics D: Applied Physics, 31, 1771–1781.
  • 40. Loh, E. 1973. Optical vibrations in sheet silicates. Journal of Physics C: Solid State Physics, 6, 1091–1104.
  • 41. Madejová, J., Gates, W. and Petit, S. 2017. IR spectra of clay minerals. In: Gates, W.P., Kloprogge, J.T., Madejova, J. and Bergaya, F. (Eds), Infrared and Raman Spectroscopies of Clay Minerals, 107–149. Elsevier; Amsterdam.
  • 42. Marco-Brown, J., Gaigneaux, E., Torres Sánchez, R. and Santos Afonso, M. 2019. Adsorption of picloram on clays nontronite, illite and kaolinite: equilibrium and herbicide-clays surface complexes. Journal of Environmental Science and Health B, 54, 281–289.
  • 43. Martínez-Alonso, S., Rustad, J. and Goetz, A. 2002. Ab initio quantum mechanical modeling of infrared vibrational frequencies of the OH group in dioctahedral phyllosilicates. Part II: main physical factors governing the OH vibrations. American Mineralogist, 87, 1224–1234.
  • 44. McKeown, D., Bell, M. and Etz, E. 1999. Vibrational analysis of the dioctahedral mica: 2M1 muscovite. American Mineralogist, 84, 1041–1048.
  • 45. Michalski, J., Poulet, F., Bibring, J. and Mangold, N. 2010. Analysis of phyllosilicate deposits in the Nili Fossae region of Mars: comparison of TES and OMEGA data. Icarus, 20, 269–289.
  • 46. Mineeva, R. 1978. Relationship between Mössbauer spectra and defect structure in biotites from electric field gradient calculations. Physics and Chemistry of Minerals, 2, 267–277.
  • 47. Muller, F., Drits, V., Plancon, V. and Robert, J.-L. 2000. Structural transformation of 2:1 dioctahedral layer silicates during dehydroxylation-rehydroxylation reactions. Clays and Clay Minerals, 48 (5), 572–585.
  • 48. Ospitali, F., Bersani, D., Lonardo, G. and Lottici, P. 2008. “Green earths”: vibrational and elemental characterization of glauconites, celadonites and historical pigments. Journal of Raman Spectroscopy, 39, 1066–1073.
  • 49. Petit, S. 2005. Crystal-chemistry of talcs: A NIR and MIR spectroscopic approach. In: Klopproge, J.T. (Ed.), The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides, CMS Workshop Lectures, 41–64. The Clay Mineral Society, 13; Aurora, CO.
  • 50. Rancourt, D. 1994. Mössbauer spectroscopy of minerals II. Problem of resolving cis and trans octahedral Fe2+ sites. Physics and Chemistry of Minerals, 21, 250–257.
  • 51. Rancourt, D., McDonald, A., Lalonde, A. and Ping J. 1993. Mössbauer absorber thicknesse for accurate site populations in Fe-bearing minerals. American Mineralogist, 78, 1–7.
  • 52. Redhammer, G., Amthauer, G., Lottermoser, W., Bernroider, M., Tippelt, G. and Roth, G. 2005. X-ray powder diffraction and 57Fe Mössbauer spectroscopy of synthetic trioctahedral micas {K}[Me3](TSi3)O10(OH)2, Me = Ni2+, Mg2+, Co2+, Fe2+; T = Al3+, Fe3+. Mineralogy and Petrology, 85, 89–115.
  • 53. Redhammer, G., Beran, A., Schneider, J., Amthauer, G. and Lottermoser, W. 2000. Spectroscopic and structural properties of synthetic micas on the annite-siderophyllite binary: Synthesis, crystal structure refinement, Mössbauer, and infrared spectroscopy. American Mineralogist, 85, 449–465.
  • 54. Richardson, S. and Richardson, J. 1982. Crystal structure of a pink muscovite from archer’s post, Kenya: implications for reverse pleochroism in dioctahedral micas. American Mineralogist, 67, 69–75.
  • 55. Rieder, M., Cavazzini, G., D’Yakonov, Y., Frank-Kameneckii, V., Gottardi, G., Geggenheim S., Koval, P., Müller, G., Neiva, A., Radoslovich, E., Robert, J., Sassi, F., Takeda, H., Weiss, Z. and Wones, D. 1998. Nomenclature of the micas. Canadian Mineralogist, 36, 905–912.
  • 56. Rinaudo, C., Roz, M., Boero, V. and Franchini-Angela, M. 2004. FT-Raman spectroscopy on several di- and trioctahedral T-O-T phyllosilicates. Neues Jahrbuch für Mineralogie-Monatshefte, 12, 537–554.
  • 57. Robert J. and Kodama, H. 1988. Generalization of the correlations between hydroxyl-stretching wave numbers and com position of micas in the system K2OaMgOaAl2O3aSiO2aH2O: a single model for trioctahedral and dioctahedral micas. American Journal of Science, 288A, 196–212.
  • 58. Russell, J. and Fraser, A. 1994. Infrared methods. In: Wilson, M.J. (Ed.), Clay mineralogy: Spectroscopic and Chemical Determinative Methods, 11–67. Chapman & Hall; London.
  • 59. Schingaro, E., Lacalamita, M., Scordari, F. and Mesto, E. 2013. 3T-phlogopite from Kasenyi kamafugite (SW Uganda): EPMA, XPS, FTIR, and SCXRD study. American Mineralogist, 98, 709–717.
  • 60. Schroeder, P. 1990. Far infrared, X-ray diffraction and chemical investigation of potassium micas. American Mineralogist, 75, 983–991.
  • 61. Schuttlefield, J., Cox, D. and Grassian, V. 2007. An investigation of water uptake on clays minerals using ATR-FTIR spectroscopy coupled with quartz crystal microbalance measurements. Journal of Geophysical Research, 112, D21303.
  • 62. Seyama, H. and Soma, M. 1985. Bonding-state characterization of the constitutent elements of silicate minerals by X-ray photoelectron spectroscopy. Journal of the Chemical Society, Faraday Transactions, 81 (2), 485–495.
  • 63. Süzer, Ş., Ertaş, N. and Ataman, O. 1999. XPS Characterization of Bi and Mn Collected on Atom Trapping Silica for AAS. Applied Spectroscopy, 53 (4), 479–482.
  • 64. Środoń, J. 1999. Nature of mixed-layer clays and mechanisms of their formation and alteration. Annual Review of Earth and Planetary Sciences, 27, 19–53.
  • 65. Tischendorf, G., Forster, H., Gottesmann B. and Rieder, M. 2007. True and brittle micas: composition and solid-solution series. Mineralogical Magazine, 71 (3), 285–320.
  • 66. Tissot, H., Li, L., Shaikhutdinov, S. and Freund, H. 2016. Preparation and structure of Fe-containing aluminosilicate thin films. Physical Chemistry Chemical Physics, 18, 25027–25035.
  • 67. Tlili, A., Smith, D., Beny, J. and Boyer, H. 1989. A Raman microprobe study of natural micas. Mineralogical Magazine, 53, 165–179.
  • 68. Tsipursky, S. and Drits, V. 1984. The distribution of octahedral cations in the 2:1 layers ofdioctahedral smectites studied by oblique-texture electron diffraction. Clay Minerals, 19, 177–193.
  • 69. Vantelon, D., Belkhou, R., Bihannic, I., Michot, L., Montargès-Pelletier, E. and Robert, J. 2009. An XPEEM study of structural cation distribution in swelling clays. I. Synthetic trioctahedral smectites. Physics and Chemistry of Minerals, 36, 593–602.
  • 70. Velde, B. 1983. Infrared OH-stretch bands in potassic micas, talcs and saponites; influence of electronic configuration and site of charge compensation. American Mineralogist, 68, 1169–1173.
  • 71. Zviagina, B., Drits, V., Rodoń, J., McCarty, D. and Dorzhieva, O. 2015. The illite-aluminoceladonite series: distinguishing features and identification criteria from X-ray diffraction and infrared spectroscopy data. Clays and Clay Minerals, 63 (5), 378–394.
  • 72. Zviagina, B., McCarty, D., Rodoń, J. and Drits, V. 2004. Interpretation of infrared spectra of dioctahedral smectites in the region of oh-stretching vibrations. Clays and Clay Minerals, 52 (4), 399–410.
  • 73. Zviagina, B., Sakharov, B. and Drits, V. 2007. X-ray diffraction criteria for the identification of trans- and cis-vacant varieties of dioctahedral micas. Clays and Clay Minerals, 55 (5), 467–480.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4713b104-1e1f-4d58-b1f3-3c75a1891824
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.