PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Charakterystyka metod usuwania bromianów(V) z wody przeznaczonej do spożycia

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Characteristics of methods for bromate removal from water intended for human consumption
Języki publikacji
PL
Abstrakty
PL
W ostatnich latach osiągnięto znaczy postęp zarówno w dziedzinie kontroli powstawania, jak i usuwania bromianów z wody, w szczególności dotyczy to nowych technologii, które w przyszłości będą mogły znaleźć szersze zastosowanie. W pracy przedstawiono charakterystykę i skuteczność procesów fizycznych, chemicznych i biologicznych, które mogą być potencjalnie wykorzystane do usuwania bromianów z wody ujmowanej przez zakłady wodociągowe. Na tej podstawie oceniono możliwości ich zastosowania w systemach oczyszczania wody przeznaczonej do spożycia przez ludzi. W przedstawionym przeglądzie uwzględniono zarówno metody znane, takie jak adsorpcja na węglu aktywnym, naświetlanie w nadfiolecie, kataliza, fotokataliza, techniki membranowe i biodegradacja, jak i metody nowe, będące jeszcze na etapie badań, takie jak zastosowanie zmodyfikowanych węgli aktywnych oraz nanomateriałów. Podkreślono, że w każdym indywidualnym przypadku ostateczny wybór metody usuwania bromianów z wody powinien być poprzedzony analizą niezawodności i oceną potencjalnego obciążenia środowiska naturalnego, wynikającego z jej wdrożenia oraz dogłębną analizą ekonomiczną, z uwzględnieniem wszystkich czynników wpływających na koszty danej technologii.
EN
Over the last few years, substantial progress has been made both in the field of bromate formation control and its removal from waters but most specifically in terms of novel technologies that could have broader application in the future. The paper presents characteristics and effectiveness of the physical, chemical and biological processes that may potentially be applied to bromate removal from water processed by water supply systems. Furthermore, opportunities for their application in systems treating water intended for human consumption were assessed. The review outlines both the well-known methods (e.g. adsorption on activated carbon, ultraviolet irradiation, catalysis, photocatalysis, membrane technics, biodegradation) and the novel ones, still in the research phase (e.g. use of modified activated carbons and nanomaterials). It has been emphasized however that any final decision on the bromate removal method should be assessed individually and preceded by a reliability analysis and assessment of potential implementation-related damage to environment as well as a thorough economic analysis that would take account of all factors affecting costs of the technology concerned.
Czasopismo
Rocznik
Strony
31--40
Opis fizyczny
Bibliogr. 83 poz.
Twórcy
autor
  • Politechnika Śląska, Wydział Inżynierii Środowiska i Energetyki, Zakład Wodociągów i Kanalizacji, ul. S. Konarskiego 18, 44-100 Gliwice
Bibliografia
  • 1. M. SIDDIQUI, G. AMY, K. OZEKIN, W. ZHAI, P. WESTERHOFF: Alternative strategies for removing bromate. Journal American Water Works Association 1994, Vol. 86, No. 10, pp. 81–96.
  • 2. H. SELCUK, Y. VITOSOGLU, S. OZAYDIN, M. BEKBOLET: Optimization of ozone and coagulation processes for bromate control in Istanbul drinking waters. Desalination 2005, Vol. 176, pp. 211–217.
  • 3. K. LISTIARINI, T. J. TONG, D. D. SUN, J. O. LECKIE: Hybrid coagulation-nanofiltration membrane for removal of bromate and humic acid from water. Journal of Membrane Science 2010, Vol. 365, No. 1–2, pp. 154–159.
  • 4. G. GORDON, R. D. GAUW, G. L. EMMET, B. BUBNIS: Chemical reduction methods for bromate ion removal. Journal American Water Works Association 2002, Vol. 94, No. 2, pp. 91–98.
  • 5. A. MILLS, G. MEADOWS: Heterogeneous redox catalysis: A novel route for removing bromated ions from water. Water Research 1995, Vol. 29, No. 9, pp. 2181–2185.
  • 6. M. SIDDIQUI, W. ZHAI, G. AMY, C. MYSORE: Bromate ion removal by activated carbon. Water Research 1996, Vol. 30, No. 7, pp. 1651–1660.
  • 7. M. L. BAO, O. GRIFFINI, D. SANTIANNI, K. BARBIERI, D. BURRINI, F. PANTANI: Removal of bromate ion from water using granular activated carbon. Water Research 1999, Vol. 33, No. 13, pp. 2959–2970.
  • 8. M. J. KIRISTIS, V. L. SNOEYINK, J. C. KRUITHOF: The reduction of bromate by granular activated carbon. Water Research 2000, Vol. 34, No. 7, pp. 4250–4260.
  • 9. R. MAHMUDOV, C. P. HUANG: Selective adsorption of oxyanions on activated carbon exemplified by Filtrasorb 400 (F400). Separation and Purification Technology 2011, Vol. 77, No.3, pp. 294–300.
  • 10. W. J. HUANG, L. Y. CHEN: Assessing the effectiveness of ozonation followed by GAC filtration in removing bromate and assimilable organic carbon. Environmental Technology 2004, Vol. 25, No. 4, pp. 403–412.
  • 11. J. M. SYMONS, G. E. SPEITEL, A. C. DIEHL, H. W. SORENSEN: Precursor control in waters containing bromide. Journal American Water Works Association 1994, Vol. 86, No. 6, pp. 48–60.
  • 12. M. SIDDIQUI, G. AMY, R. G. RICE: Bromate ion formation: A critical review. Journal American Water Works Association 1995, Vol. 87, No. 10, pp. 58 – 70.
  • 13. M. J. PRADOS-RAMIREZ, N. CIBA, M. M. BOURBIGOT: Available techniques for reducing bromate in drinking water. Water Supply 1995, Vol. 13, pp. 61–70.
  • 14. A. H. KONSOWA: Bromate removal from water using granular activated carbon in a batch recycle. Desalination and Water Treatment 2009, Vol. 12, No. 1–3, pp. 375–381.
  • 15. M. ASAMI, T. AIZAWA, T. MORIOKA, W. NISHIJIMA, A. TABATA, Y. MAGARA: Bromate removal during transition from new granular activated carbon (GAC) to biological activated carbon (BAC). Water Research 1999, Vol. 33, No. 12, pp. 2797–2804.
  • 16. W. J. HUANG, H. S. PENG, M. Y. PENG, L. Y. CHEN: Removal of bromated and assimilable organic carbon from drinking water using granular activated carbon. Water Science and Technology 2004, Vol. 50, No. 8, pp. 73–80.
  • 17. M. J. KIRISTIS, V. L. SNOEYINK, H. INAN, J. C. CHEESANFORD, L. RASKIN, J. C. BROWN: Water quality factors affecting bromate reduction in biologically active carbon filters. Water Research 2001, Vol. 35, No. 4, pp. 891–900.
  • 18. J. CHOMA, Ł. OSUCHOWSKI, M. JARONIEC: Właściwości i zastosowanie węgli aktywnych otrzymanych z materiałów polimerowych (Properties and applications of activated carbons obtained from polymeric materials). Ochrona Środowiska 2014, vol. 36, nr 2, ss. 3–16.
  • 19. C. XU, X. WANG, X. SHI, S. LIN, L. ZHU, Y. CHEN: Bromate removal from aqueous solutions by ordered mesoporous carbon. Environmental Technology 2014, Vol. 35, No. 8, pp. 984–992.
  • 20. H. YAN, X. DU, P. LI, S. YU, Y. TANG: Adsorption of bromate from aqueous solutions by modifed granular activated carbon: batch and column tests. Ozone: Science & Engineering 2015, Vol. 37, No. 4, pp. 357–370.
  • 21. W. CHEN, Z.-Y. ZHANG, Q. LI, H.-Y. WANG: Adsorption of bromate and competition from oxyanions on cationic surfactant-modifi ed granular activated carbon (GAC). Chemical Engineering Journal 2012, Vol. 203, pp. 319–325.
  • 22. L. GU, D. WANG, R. DENG, H. LIU, H. AI: Effect of surface modification of activated carbon on its adsorption capacity for bromate. Desalination and Water Treatment 2013, Vol. 51, No. 13–15 , pp. 2592–2601.
  • 23. N. KISHIMOTO, N. MATSUDA: Bromate ion removal by electrochemical reduction using an activated carbon felt electrode. Environmental Science & Technology 2009, Vol. 43, No. 6, pp. 2054–2059.
  • 24. A. BHATNAGAR, M. SILLANPÄÄ: Sorption studies of bromate removal from water by nano-Al2O3. Separation Science and Technology 2012, Vol. 47, No. 1, pp. 89–95.
  • 25. R. CHITRAKAR, A. SONODA, Y.MAKIA, T. HIROTSU: Calcinated Mg-Al layered double hydroxides for uptake of trace levels of bromate from aqueous solution. Industrial & Engineering Chemistry Research 2011, Vol. 50, No. 15, pp. 9280–9285.
  • 26. Y. ZHANG, X. LI, H. LIU: A novel process for bromate removal from water using calcinated Zn-Al layered double hydroxides. Desalination and Water Treatment 2015, Vol. 55, No. 5, pp. 1325–1332.
  • 27. Q. WANG, S. SNYDER, J. KIM, H. CHOI: Aqueous ethanol modified nanoscale zerovalent iron in bromate reduction: Synthesis, characterization, and reactivity. Environmental Science and Technology 2009, Vol. 43, No. 9, pp. 3292–3299.
  • 28. Q. WANG, S. LEE, H. CHOI: Aging study on the structure of Fo nanoparticles: Stabilization, characterization, and reactivity. The Journal of Physical Chemistry 2010, Vol. 114, No. 5, pp. 2027–2033.
  • 29. Y. ZHANG, H. LIU, R. LIU: Kinetic model of the ozone oxidation by-product bromate removal by nanoparticle zero iron. Desalination and Water Treatment 2015, Vol. 53, No. 2, pp. 469–474.
  • 30. L. XIE: Factors and mechanisms controlling bromate removal by zerovalent iron. PhD thesis, Hong Kong University of Science and Technology, Hong Kong 2005.
  • 31. W. SHEN, F. LIN, X. JIANG, H. LI, Z. AI, L. ZHANG: Efficient removal of bromate with core-shell Fe@Fe2O3 nanowires. Chemical Engineering Journal 2017, Vol. 308, pp. 880–888.
  • 32. M. SKUNIK, P.J. KULESZA: Phosphomolybdate-modified multi-walled carbon nanotubes as effective mediating systems for electrocatalytic reduction of bromate. Analytica Chimica Acta 2009, Vol. 631, No. 2, pp. 153–160.
  • 33. L. XIE, C. SHANG: The effects of operational parameters and common anions on the reactivity of zero-valent iron in bromate reduction. Chemosphere 2007, Vol. 66, pp. 1652–1659.
  • 34. C. XU, X. WANG, S. LIN, L. ZHU, Y. CHEN: Enhanced removal efficiency of bromate from aqueous solutions by nanoscale zero-valent iron immobilized on activated carbon. Desalination and Water Treatment 2015, Vol. 54, No. 9, pp. 2480–2489.
  • 35. X. WU, Q. YANG, D. XU, Y. ZHONG, K. LUO, X. LI, H. CHEN, G. ZENG: Simultaneous adsorption/reduction of bromate by nanoscale zerovalent iron supported on modified activated carbon. Industrial & Engineering Chemistry Research 2013, Vol. 52, No. 35, pp. 12574–12581.
  • 36. A. BHATNAGAR, Y. H. CHOI, Y. J. YOON, Y. SHIN, B. H. JEON, J. W. KANG: Bromate removal from water by granular ferric hydroxide (GFH). Journal of Hazardous Materials 2009, Vol. 170, No. 1, pp. 134–140.
  • 37. C. XU, J. SHI, W. ZHOU, B. GAO, Q. YUE, X. WANG: Bromate removal from aqueous solutions by nano crystalline akageneite (B-FEOOH)-coated quartz sand (CACQS). Chemical Engineering Journal 2012, Vol. 187, pp. 63–68.
  • 38. R. BUTLER, A. GODLEY, L. LYTTON, E. CARTMELL: Bromate environmental contamination: Review of impact and possible treatment. Critical Reviews in Environmental Science Technology 2005, Vol. 35, No. 3, pp. 193–217.
  • 39. T. F. MARHABA, K. BENGRAINE: Review of strategies for minimizing bromate formation resulting from drinking water ozonation. Clean Technologies and Environmental Policy 2003, Vol. 5, pp. 101–112.
  • 40. J. P. van der HOEK, J. A. M. H. HOFFMAN, P. A. C. BONNÉ, D. O. RIJNBENDE: The use of electrodialysis at Amsterdam Water Supply. In: Membrane Technology in Water and Wastewater Treatment, RSC, Cambridge 2000.
  • 41. A. BERNARDES, M. A. S. RODRIGUES, J. Z. FERREIRA: Electrodialysis and Water Reuse: Novel Approaches. Springer- Verlag, Berlin-Heidelberg 2014.
  • 42. J. A.WIŚNIEWSKI, S. KLIBER: Usuwanie bromianów z roztworów wodnych w membranowym procesie wymiany anionowej (Removal of bromates from aqueous solutions by anion exchange in a membrane process). Ochrona Środowiska 2009, vol. 31, nr 2, ss. 35–39.
  • 43. S. KLIBER, J. A.WIŚNIEWSKI: Removal of bromate and associated anions from water by Donnan dialysis with anionexchange membrane. Desalination and Water Treatment 2011, Vol. 35, No. 1–3, pp. 158–163.
  • 44. J. A.WIŚNIEWSKI, S. KLIBER: Bromate removal from water in electrodialysis process. Monografie Komitetu Inżynierii Środowiska PAN 2010, Vol. 66, pp. 305–313.
  • 45. J. P. van der HOEK, D. O. RIJNBENDE, C. J. A. LOKIN, P. A. C. BONNÉ, M. T. LOONEN, J. A. M. H. HOFFMAN: Electrodialysis as an alternative for reverse osmosis in an integrated membrane system. Desalination 1998, Vol. 117, No. 1–3, pp. 159–172.
  • 46. M. BODZEK, K. KONIECZNY: Wykorzystanie procesów membranowych w uzdatnianiu wody. Oficyna Wydawnicza Projprzem-Eko, Bydgoszcz 2005.
  • 47. M. BODZEK, K. KONIECZNY: Membrane techniques in the removal of inorganic anionic micropollutants from water environment – state of the art. Archives of Environmental Protection 2011, Vol. 37, No. 2, pp. 15–29.
  • 48. Rozporządzenie Ministra Środowiska z 18 listopada 2014 r. w sprawie warunków, jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego. Dziennik Ustaw RP 2014, poz. 1800.
  • 49. Rozporządzenie Ministra Budownictwa z 14 lipca 2006 r. w sprawie sposobu realizacji dostawców ścieków przemysłowych oraz warunków wprowadzania ścieków do urządzeń kanalizacyjnych. Dziennik Ustaw nr 136, poz. 964.
  • 50. A. L. KOWAL, M. ŚWIDERSKA-BRÓŻ: Oczyszczanie wody. Podstawy teoretyczne i technologiczne, procesy i urządzenia. Wydawnictwo Naukowe PWN, Warszawa 2007.
  • 51. L. DING, B. DU, L. GANG, D. HUIPING: Adsorption of bromate from emergently polluted raw water using MIEX resin: Equilibrium, kinetic, and thermodynamic modeling studies. Desalination and Water Treatment 2015, Vol. 56, No. 8, pp. 3193–2205.
  • 52. S. LI, Q. YANG, F. CHEN, T. XIE, F. YAO, J. SUN, C. JIANG, X. LI, G. ZENG: Adsorptive bromate removal from aqueous solution by commercial strongly basic resin impregnated with hydrated ferric oxide (HFO): Kinetics and equilibrium studies. Journal of Chemical & Engineering Data 2016, Vol. 61, No. 3, pp. 1305–1312.
  • 53. M. NAUSHAD, M. R. KHAN, Z. A. ALOTHMAN, M. AWUAL: Bromate removal from water samples using strongly basic exchange resin Amberlite IRA-400: Kinetics, isotherms and thermodynamic studies. Desalination and Water Treatment 2016, Vol. 57, No. 13, pp. 5781–5788.
  • 54. M. R. D. MERGEN, B. JEFFERSON, S. A. PARSON, P. JARVIS: Magnetic ion exchange treatment: Impact of water type and resin use. Water Research 2008, Vol. 42, No. 8–9, pp. 1977–1988.
  • 55. G. V. BUXTON, C. L. GREENSTOCK, W. P. HELMAN, A. B. ROSS: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O-) in aqueous solution. Journal of Physical and Chemical Reference Data 1988, Vol. 17, No. 2, pp. 513–886.
  • 56. W. J. COOPER: Removing THMs from drinking water using high-energy electron beam irradiation. Journal American Water Works Association 1993, Vol. 85, No. 9, pp. 106–112.
  • 57. A. AMICHAI, G. CZAPSKI, A. TREININ: Flash photolysis of the oxybromine anions. Israel Journal of Chemistry 1969, Vol. 7, pp. 351-359.
  • 58. S. PELDSZUS, S. A. ANDREWS, R. SOUZA, F. SMITH, I. DOUGLAS, J. BOLTON, P. M. HUCK: Effect of mediumpressure UV irradiation on bromate concentrations in drinking water, a pilot-scale study. Water Research 2004, Vol. 38, No. 1, pp. 211–217.
  • 59. P. H. NEAL, E. GÜRTEN, V. DIYAMANDOĞLU: Transformation of bromine species during decomposition of bromate under UV light from low pressure mercury vapor lamps. Ozone: Science & Engineering 2006, Vol. 28, No. 4, pp. 217–228.
  • 60. V. S. V. BOTLAGUDURU, B. BATCHELOR, A. ABDELWAHAB: Application of UV-sulfite advanced reduction process to bromate removal. Journal of Water Process Engineering 2015, Vol. 5, pp. 76–82.
  • 61. EPA Guidance Manual: Alternative Disinfectants and Oxidants. United States Environmental Protection Agency, Office of Water, 815-R-99-014, 1999.
  • 62. M. SIDDIQUI, G. L. AMY, L. J. McCOLLUM: Bromate destruction by UV irradiation and electric arc discharge. Ozone: Science & Engineering 1996, Vol. 18, No. 3, pp. 271–290.
  • 63. U. OLSIŃSKA, P. MARKOWICZ: Removal of adsorbable organic halides from water containing bromide ions by conventional and advanced oxidation. Ozone: Science & Engineering 2016, Vol. 38, No. 6, pp. 452–464.
  • 64. U. von GUNTEN: Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Research 2003, Vol. 37, No. 7, pp. 1469–1487.
  • 65. B. TAWABINI, A. ZUBAIR: Bromate control in phenol-contaminated water treated by UV and ozone processes. Desalination 2011, Vol. 267, No. 1, pp. 16–19.
  • 66. J. M. SYMONS, M. C. H. ZHENG: Technical note: Does hydroxyl radical oxidize bromide to bromate? Journal American Water Works Association 1997, Vol. 89, No. 6, pp. 106–109.
  • 67. A. MILLS, A. BELGHAZI, D. RODMAN: Bromate removal from drinking water by semiconductor photocatalysis. Water Research 1996, Vol. 30, No. 9, pp. 1973–1978.
  • 68. F. M. MONTEIRO PASCHOAL, G. PEPPING, M. V. BOLDRIN ZANONI, M. A. ANDERSON: Photoelectrocatalytic removal of bromate using Ti/TiO2 coated as a photocathode. Environmental Science & Technology 2009, Vol. 43, No. 19, pp. 7496–7502.
  • 69. H. NOGUCHI, N. NAKAJIMA, T. WATANABE, K. HASIMOTO: Removal of bromate ion from water using TiO2 and alumina-loaded TiO2 photocatalysts. Water Science and Technology 2002, Vol. 46, No. 11-12, pp. 27–31.
  • 70. H. NOGUCHI, N. NAKAJIMA, T. WATANABE, K. HASIMOTO: Design of a photocatalyst for bromate decomposition: Surface modification of TiO2 by pseudo-boehmite. Water Science and Technology 2003, Vol. 37, No. 1, pp. 153–157.
  • 71. X. ZHAO, H. LIU, Y. SHEN, J. QU: Photocatalytic reduction of bromate at C60 modified Bi2MoO6 under visible light irradiation. Applied Catalysis B: Environmental 2011, Vol. 106, No. 1–2, p. 63–68.
  • 72. F. CHEN, Q. YANG, Y. ZHONG, H. AN, J. ZHAO, T. XIE, Q. XU, X. LI, D. WANG, G. ZENG: Photo-reduction of bromate in drinking water by metallic Ag and reduced graphene oxide (RGO) jointly modified BiVO4 under visible light irradiation. Water Research 2016, Vol. 101, pp. 555–565.
  • 73. W. A. M.HIJNEN, R. JONG, D. van der KOOIJ: Bromate removal in a denitrifying bioreactor used in water treatment. Water Research 1999, Vol. 33, No. 4, pp. 1049–1053.
  • 74. L. S. DOWNING, G. R. NERENBER: Kinetics of microbial bromate reduction in a hydrogen-oxidizing, denitrifying biofilm reactor. Biotechnology and Bioengineering 2007, Vol. 98, No. 3, pp. 543–550.
  • 75. C. G. van GINKEL, A. M. van HAPEREN, B. van der TOGT: Reduction of bromate to bromide coupled to acetate oxidation by anaerobic mixed microbial cultures. Water Research 2005, Vol. 39, No. 1, pp. 59–64.
  • 76. M. CHAIREZ, A. LUNA-VELASCO, J.A. FIELD, X. JU, R. SIERRA-ALVAREZ: Reduction of bromate by biogenic sulfide produced during microbial sulfur disproportionation. Biodegradation 2010, Vol. 21, No. 2, pp. 235–244.
  • 77. A. ASSUANÇÄO, M. MARTINS, G. SILVA, H. LUCAS, M.R. COELHO M, M.C. COSTA: Bromate removal by anaerobic bacterial community: Mechanism and phylogenetic characterization. Journal of Hazardous Materials 2011, Vol. 197, pp. 237–243.
  • 78. R. BUTLER, S. EHRENBERG, A. R. GODLEY, R. LYTTON, E. CARTMELL: Remediation of bromate-contaminated groundwater in an ex situ fixed-film bioreactor. Science of the Total Environment 2006, Vol. 366, No. 1, pp. 12–20.
  • 70. L. KRISTANA, C. JOLL, A. HEITZ: Powdered activated carbon coupled with enhanced coagulation for natural organic matter removal and disinfection by-product control: Application in a Western Australian water treatment plant. Chemosphere 2011, Vol. 85, No. 5, pp. 661–667.
  • 80. K. J. MARTIN, L. S. DOWNING, R. NERENBERG: Evidence of specialized bromate-reducing bacteria in a fiber membrane biofilm reactor. Water Science and Technology: Water Supply 2008, Vol. 8, No. 4, pp. 473–479.
  • 81. R. NERENBERG, B. E. RITTMAN: Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other oxidized contaminants. Water Science and Technology 2004, Vol. 49, No. 11–12, pp. 223–230.
  • 82. J. G. CRESPO, S. VELIZAROV, M. A. REIS: Membrane bioreactors for the removal of anionic micropollutants from drinking water. Current Opinion in Chemical Biology 2004, Vol. 15, No. 5, pp. 463–468.
  • 83. C. T. MATOS, S. VELIZAROV, M. A. REIS, J. G. CRESPO: Removal of bromate from drinking water using the ion exchange membrane bioreactor concept. Environmental Science & Technology 2008, Vol. 42, No. 20, pp. 7702–7708
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4712836a-f2f8-4961-b48d-8a1ca58f6e67
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.