Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, sonochemical-assisted magnesium borate synthesis is studied from different boron sources. Various reaction parameters are successfully applied by a simple and green method. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and Raman spectroscopies are used to characterize the synthesized magnesium borates on the other hand surface morphologies are investigated by using scanning electron microscope (SEM). The XRD analyses showed that the products were admontite [MgO(B2O3)3 · 7(H2O)] with JCPDS (Joint Committee on Powder Diffraction Standards) no. of 01-076-0540 and mcallisterite [Mg2(B6O7(OH)6)2 · 9(H2O)] with JCPDS no. of 01-070-1902. The results that found in the spectroscopic studies were in a good agreement with characteristic magnesium borate bands in both regions of infra-red and visible. According to SEM results, obtained borates were in micro and sub-micro scales. By the use of ultrasonication, reaction yields were found between 84.2 and 97.9%. As a result, it is concluded that the sonochemical approach is a practicable synthesis method to get high efficiency and high crystallinity in the synthesis magnesium borate compounds.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
81--88
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
- Yildiz Technical University, Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul, Turkey
autor
- Yildiz Technical University, Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul, Turkey
autor
- Yildiz Technical University, Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul, Turkey
Bibliografia
- 1. Mason, T.J. (2003). Sonochemistry and Sonoprocessing: The link, the trends and (probably) the future. Ultrason. Sonochem. 10, 175-179. DOI: 10.1016/S1350-4177(03)00086-5.
- 2. Mason, T.J. (2007). Sonochemistry and the environment - Providing a “Green” link between chemistry, physics and engineering. Ultrason. Sonochem. 14, 476-483. DOI: 10.1016/j. ultsonch.2006.10.008.
- 3. Cintas, P. & Luche, J.L. (1999). The sonochemical approach. Green Chem. 1, 115-125. DOI: 10.1039/A900593E.
- 4. Gedanken, A. (2004). Using sonochemistry for the fabrication of nanomaterials. Ultrason. Sonochem. 11, 47-55. DOI: 10.1016/j.ultsonch.2004.01.037.
- 5. Bang, J.H. & Suslick, K.S. (2010). Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater. 22, 1039-1059. DOI: 10.1002/adma.200904093.
- 6. Kurikka, K.V.P.M., Ulman, A., Yan, X., Yang, N., Estournes, C., White, H. & Rafailovich, M. (2001). Sonochemical synthesis of functionalized amorphous iron oxide nanoparticles. Langmuir 17, 5093-5097. DOI: 10.1021/la010421+.
- 7. Kumar, B., Smita, K., Cumbal, L., Debut, A. & Pathak, R.N. (2014). Sonochemical synthesis of silver nanoparticles using starch: A comparison. Bioinorg. Chem. Appl. DOI: 10.1155/2014/784268.
- 8. Mettin, R. Cairós, C. & Troia, A. (2015). Sonochemistry and bubble dynamics. Ultrason. Sonochem. 25, 24-30. DOI: 10.1016/j.ultsonch.2014.08.015.
- 9. Suslick, K.S. & Price, G.J. (1999). Applications of ultrasound to materials chemistry. Annu. Rev. Mater. Sci. 29, 295-326.
- 10. Zak, A.K., Majid, W.H., Wang, H.Z., Yousefi , R., Golsheikh, A.M. & Ren, Z.F. (2013). Sonochemical synthesis of hierarchical ZnO nanostructures. Ultrason. Sonochem. 20, 395-400. DOI: 10.1016/j.ultsonch.2012.07.001.
- 11. Kim, W., Choi, D. & Kim, S. (2010). Sonochemical synthesis of zeolite: A from metakaolinite in NaOH solution. Mater. Trans. 9, 1694-1698. DOI: 10.2320/matertrans.M2010191.
- 12. Safaei-Ghomi, J. & Akbarzadeh, Z. (2015). Sonochemically Synthesis of arylethynyl linked triarylamines catalyzed by CuI nanoparticles: A rapid and green procedure for sonogashira coupling. Ultrason. Sonochem. 22, 365-370. DOI: 10.1016/j. ultsonch.2014.05.016.
- 13. Sadr, M.H. & Nabipour, H. (2013). Synthesis and identification of carvedilol nanoparticles by ultrasound method. J. Nanostruct. Chem. 3: 26. DOI: 10.1186/2193-8865-3-26.
- 14. Hernández-Perez, I., Maubert, A.M., Rendón, L., Santiago, P., Herrera-Hernández, H., Díaz-Barriga Arceo, L., Garibay Febles, V., Palacios González, E. & González-Reyes, L. (2012). Ultrasonic Synthesis: structural, optical and electrical correlation of TiO2 nanoparticles. Int. J. Electrochem. Sci. 7, 8832-8847.
- 15. Coskuner, B., Kanturk Figen, A. & Piskin, S. (2014). Sonochemical approach to synthesis of Co-B catalysts and hydrolysis of alkaline NaBH4 solutions. J. Chem. Article ID 185957. DOI: 10.1155/2014/185957.
- 16. Hu, X., Lu, Q., Sun, L., Cebe, P., Wang, X., Zhang, X. & Kaplan, D.L. (2010). Biomaterials from ultrasonication-induced silk fibroin-hyaluronic acid hydrogels. Biomacromolecules 11, 3178-3188. DOI: 10.1021/bm1010504.
- 17. Dou, L., Zhong, J. & Wang, H. (2010). Preparation and characterization of magnesium borate for special glass. Phys. Scr. T139:2010: 014010. DOI: 10.1088/0031-8949/2010/T139/014010.
- 18. Li, S., Xu, D., Shen, H., Zhou, J. & Fan, Y. (2012). Synthesis and Raman properties of magnesium borate micro/ nanorods. Mater. Res. Bull. 47, 3650-3653. DOI: 10.1016/j. materresbull.2012.06.046.
- 19. Kumari, L., Li, W.Z., Kulkarni, S., Wu, K.H., Chen, W., Wang, C., Vannoy, C.H. & Leblanc, R.M. (2010). Effect of surfactants on the structure and morphology of magnesium borate hydroxide nanowhiskers synthesized by hydrothermal route. Nanoscale Res. Lett. 5, 149-157. DOI: 10.1007/s11671-009-9457-9.
- 20. Zhu, W., Zhang, Q., Xiang, L., Wei, F., Sun, X., Piao, X. & Zhu, S. (2008). Flux-assisted thermal conversion route to pore-free high crystallinity magnesium borate nanowhiskers at a relatively low temperature. Cryst. Growth Des. 8, 2938-2945. DOI: 10.1021/cg800050u.
- 21. Zhu, W., Xiang, L., He, T. & Zhu, S. (2006). Hydrothermal synthesis and characterization of magnesium borate hydroxide nanowhiskers. Chem. Lett. 35, 1158-1159. DOI: 10.1246/ cl.2006.1158.
- 22. Zhu, W., Zhang, X., Xiang, L. & Zhu, S. (2009). Hydrothermal formation of the head-to-head coalesced szaibelyite MgBO2(OH) nanowires. Nanoscale Res. Lett. 4, 724-731. DOI: 10.1007/s11671-009-9306-x.
- 23. Zhu, W., Li, G., Zhang, Q., Xiang, L. & Zhu, S. (2010). Hydrothermal mass production of MgBO2(OH) nanowhiskers and subsequent thermal conversion to Mg2B2O5 nanorods for biaxially oriented polypropylene resins reinforcement. Powder Technol. 203, 265-271. DOI: 10.1016/j.powtec.2010.05.017.
- 24. Elssfah, E.M., Elsanousi, A., Zhang, J., Song, H.S. & Tang, C. (2007). Synthesis of magnesium borate nanorods. Mater. Lett. 61, 4358-4361. DOI: 10.1016/j.matlet.2007.02.002.
- 25. Li, Y., Fan, Z., Lu, J.G. & Chang, R.P.H. (2004). Synthesis of magnesium borate (Mg2B2O5) nanowires by chemical vapor deposition method. Chem. Mater. 16, 2512-2514. DOI: 10.1021/cm0496366.
- 26. Xu, B.S., Li, T.B., Zhang, Y., Zhang, Z.X., Liu, X.G. & Zhao, J.F. (2008). New synthetic route and characterization of magnesium borate nanorods. Cryst. Growth Des. 8, 1218-1222. DOI: 10.1021/cg700690g.
- 27. Wang, G., Wang, K., Hou, J., Wang, Y. & Kong, C. (2011). Preparation of magnesium borate nanomaterials by hydrothermal route. Adv. Mater Res. 320, 642-646. DOI: 10.4028/www. scientifi c.net/AMR.320.642.
- 28. Zhihong, L. & Mancheng, H. (2004). New synthetic method and thermochemistry of szaibelyite. Thermochim. Acta 411, 27-29. DOI: 10.1016/j.tca.2003.07.009.
- 29. Kipcak, A.S., Yildirim, M., Aydin Yuksel, S., Moroydor Derun, E. & Piskin, S. (2014). The synthesis and physical properties of magnesium borate mineral of admontite synthesized from sodium borates. Adv. Mater. Sci. Eng. ID 819745. DOI: 10.1155/2014/819745.
- 30. Moroydor Derun, E. & Senberber, F.T. (2014). Characterization and thermal dehydration kinetics of highly crystalline mcallisterite, synthesized at low temperatures. Sci. World J. ID 985185. DOI: 10.1155/2014/985185.
- 31. Kipcak, A.S., Moroydor Derun, E. & Piskin, S. (2014). Synthesis and characterization of magnesium borate minerals of admontite and obtained via ultrasonic mixing of magnesium oxide and various sources of boron: A novel method. Turk. J. Chem. 38, 792-805. DOI: 10.3906/kim-1307-61.
- 32. Taylan, N., Gurbuz, H. & Bulutcu, A.N. (2007). Effects of ultrasound on the reaction step of boric acid production process from colemanite. Ultrason. Sonochem. 14, 633-638. DOI: 10.1016/j.ultsonch.2006.11.001.
- 33. Aksener, E., Kanturk Figen, A. & Piskin, S. (2014). Synthesis of nanometric β-Barium metaborate powder from different borate solutions by ultrasound-assisted precipitation. Res. Chem. Intermed. 40, 2103-2117. DOI: 10.1007/s11164-013-1106-3.
- 34. Gayathri Devi, A.V., Rajendran, V., Jeyasubramanian, K., Suresh Kumar, N. & Abdel-Hameed, S.A.M. (2006). Ultrasonic investigation on nanocrystalline barium borate (BBO) glass ceramics. Synth. React. Inorg. Me. 36, 215-219.
- 35. Yilmaz, M.S., Kanturk Figen, A. & Piskin, S. (2012). Production of sodium metaborate tetrahydrate (NaB(OH)4·2H2O) using ultrasonic irradiation. Powder Technol. 215-216, 166-173. DOI: 10.1016/j.powtec.2011.09.043.
- 36. Yongzhong, J., Shiyang, G., Shuping, X. & Jun, L. (2000). FT-IR spectroscopy of supersaturated aqueous solutions of magnesium borate. Spectrochim. Acta A. 56, 1291-1297. DOI: 10.1016/j.saa.2004.02.027.
- 37. Moroydor Derun, E., Kipcak A.S., Senberber, F.T. & Sari Yilmaz, M. (2015). Characterization and thermal dehydration kinetics of admontite mineral hydrothermally synthesized from magnesium oxide and boric acid precursor. Res. Chem. Intermed. 41, 853-866. DOI: 10.1007/s11164-013-1237-6.
- 38. Fogler, H.S., Element of Chemical Reaction Engineering, Fifth ed., Prentice-Hall, Indiana, 2016.
- 39. Anthony, J.W., Bideaux, R.A., Bladh, K.W., Nichols & M.C. Mcallisterite- Handbook of Minerology, First ed., Mineral Data Publishing, Virginia, 2003.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47125f60-9eb5-431d-bd8e-481795d70dd0