PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Application of overset mesh approach in the investigation of the Savonius wind turbines with rigid and deformable blades

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Machines utilising renewable energy constantly undergo research aimed at raising their efficiency. One of them is a Savonius wind turbine, where scientists propose adjustments to improve its aerodynamic properties. At present, their assessment is usually performed by means of transient computational fluid dynamics simulations with two- or threedimensional models. In this paper, the overset (chimera) mesh approach was applied to investigate the performance of a Savonius wind turbine equipped with deformable blades. They were continuously deformed during rotation by a dedicated mechanism to increase a positive torque of the advancing blade, and meanwhile, decrease a negative torque of the returning blade. A quasi-two-dimensional model with a two-way fluid-structure interaction method was applied, where the structural solver determined blade deflection caused by the predefined deformation mechanism and aerodynamic loads, whereas the coupled computational fluid dynamics solver determined the transient flow. The deformable blades rotor performance was calculated and compared with a conventional rigid Savonius turbine, both simulated using the overset mesh approach. The average value of the power coefficient achieved a 55% rise in the case of deformable blades turbine. Additionally, to validate the overset method, its results were compared with the classical sliding mesh method for a conventional rigid rotor.
Słowa kluczowe
Rocznik
Strony
201--216
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr., wz.
Twórcy
  • Lodz University of Technology, Institute of Turbomachinery, Wólczańska 219/223, 90-924 Łódź, Poland
  • Lodz University of Technology, Institute of Turbomachinery, Wólczańska 219/223, 90-924 Łódź, Poland
  • Lodz University of Technology, Institute of Turbomachinery, Wólczańska 219/223, 90-924 Łódź, Poland
  • Lodz University of Technology, Institute of Turbomachinery, Wólczańska 219/223, 90-924 Łódź, Poland
  • Lodz University of Technology, Institute of Turbomachinery, Wólczańska 219/223, 90-924 Łódź, Poland
Bibliografia
  • [1] Akwa J.V., Vielmo H.A., Petry A.P.: A review on the performance of Savonius wind turbines. Renew. Sust. Energ. Rev. 16(2012), 5, 3054–3064.
  • [2] Masdari M., Tahani M., Naderi M.H., Babayan N.: Optimization of airfoil Based Savonius wind turbine using coupled discrete vortex method and salp swarm algorithm. J. Clean. Prod. 222(2019), 47–56.
  • [3] Alom N., Saha U.K..: Influence of blade profiles on Savonius rotor performance: Numerical simulation and experimental validation. Energ. Convers. Manage. 186(2019), 267–277.
  • [4] Zemamou M., Aggour M., Toumi A.: Review of savonius wind turbine design and performance. Energy Proced. 141(2017), 383–388.
  • [5] Tartuferi M., D’Alessandro V., Montelpare S., Ricci R.: Enhancement of savonius wind rotor aerodynamic performance: A computational study of new blade shapes and curtain systems. Energy 79(2015), 371–384.
  • [6] Mauro S., Brusca S., Lanzafame R., Messina M.: CFD modeling of a ducted Savonius wind turbine for the evaluation of the blockage effects on rotor performance. Renew. Energ. 141(2019), 28–39.
  • [7] Sobczak K., Obidowski D., Reorowicz P., Marchewka E.: Numerical investigations of the savonius turbine with deformable blades. Energies 13(2020), 14, 3717.
  • [8] Obidowski D., Sobczak K., Jozwik K., Reorowicz P.: Vertical Axis Wind Turbine with a Variable Geometry of Blades. European Patent Application 19199085.2, 24 Sept. 2019.
  • [9] Kamoji M.A., Kedare S.B., Prabhu S.V..: Experimental investigations on single stage modified Savonius rotor. Appl. Energ. 86(2009), 7-8, 1064–1073.
  • [10] Lipian M., Czapski P., Obidowski D.: Fluid-structure interaction numerical analysis of a small, urban wind turbine blade. Energies 13(2020), 7, 1–15.
  • [11] Marzec Ł., Bulinski Z., Krysinski T.: Fluid structure interaction analysis of the operating Savonius wind turbine. Renew. Energ. 164(2021), 272–284.
  • [12] Chan C.M., Bai H.L., He D.Q.: Blade shape optimization of the Savonius wind turbine using a genetic algorithm. Appl. Energ. 213(2018), 148–157.
  • [13] Saeed H.A.H., Elmekawy A.M.N., Kassab S.Z.: Numerical study of improving Savonius turbine power coefficient by various blade shapes. Alexandria Eng. J. 58(2019), 2, 429–441.
  • [14] Mohamed M.H., Janiga G., Pap E., Thcvenin D.: Optimization of Savonius turbines using an obstacle shielding the returning blade. Renew. Energ. 35(2010), 11, 2618–2626.
  • [15] Kacprzak K., Liskiewicz G., Sobczak K.: Numerical investigation of conventional and modified Savonius wind turbines. Renew. Energ. 60(2013), 578–585.
  • [16] ANSYS Inc.: ANSYS Fluent 20.2 User’s Guide. ANSYS Inc., Canonsburg, 2020.
  • [17] ANSYS Inc.: https://www.ansys.com/. ANSYS Inc., Canonsburg, 2020.
  • [18] Menter F.R., Langtry R., Völker S, Huang P.G.: Transition modelling for general purpose CFD codes. In: Proc. ERCOFTAC Int. Symp. on Engineering Turbulence Modelling and Measurements 6; ETMM6, Sardinia, 23-25 May 2005, 31–48.
  • [19] Kerikous E., Thévenin D.: Optimal shape of thick blades for a hydraulic Savonius turbine. Renew. Energ. 134(2019), 629–638.
  • [20] Ferrari G., Federici D., Schito P., Inzoli F., Mereu R.: CFD study of Savonius wind turbine: 3D model validation and parametric analysis. Renew. Energ. 105(2017), 722–734.
  • [21] Kacprzak K., Sobczak K.: Numerical analysis of the flow around the Bach-type Savonius wind turbine. J. Phys. Conf. Ser. 530(2014), 1, 012063.
  • [22] Sobczak K.: Numerical investigations of an influence of the aspect ratio on the Savonius rotor performance. J. Phys. Conf. Ser. 1101(2018), 1, 012034.
  • [23] Krysiński T., Buliński Z., Nowak A.J.: Numerical modeling and preliminary validation of drag-based vertical axis wind turbine. Arch. Thermodyn. 36(2015), 1,19–38.
  • [24] Celik I.B., Ghia U., Roache P.J., Freitas C.J., Coleman H., Raad P.E.: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. 130(2008), 7, 0780011–0780014.
  • [25] Akwa J.V., Vielmo H.A., Petry A.P.: A review on the performance of Savonius wind turbines. Renew. Sust. Energ. Rev. 16(2012), 5, 3054–3064.
  • [26] D’AlessandroV., Montelpare S., Ricci R., Secchiaroli A.: Unsteady aerodynamics of a Savonius wind rotor: A new computational approach for the simulation of energy performance. Energy 35(2010), 8, 3349–3363.
  • [27] Antar E., Elkhoury M.: Casing optimization of a Savonius wind turbine. Energ. Rep. 6(2020), 184–189.
Uwagi
This paper was created as a part of a project “Wdrozeniowa Szkoła Doktorancka” (POWR.03.02.00-00-I042/16-00) co-financed by the European Union under the European Social Fund.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-470f5e40-fe39-49fe-a02e-c3360c390f01
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.