PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal-strength analysis of a slow closing valve during accelerated startup of a steam turbine

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study assesses the accelerated startup of a steam turbine from the perspective of a slow closing valve. Valves are one of the first components affected by high temperature gradients and are key components on which the power, efficiency and safety of the steam system depends. The authors calibrated the valve model based on experimental data and then performed extended Thermal-FSI analyses relative to the experiment. Key results of the work include the possibility to reduce the startup time of a steam turbine while complying with stress limits and not excessively straining structural components of the valve. The single most important finding is that there is no need to change valves when accelerating the startup of steam turbines.
Rocznik
Strony
68--78
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Fluid-Flow Machinery Polish Academy of Sciences, 14 Fiszera street, 80-231 Gdansk, Poland
Bibliografia
  • [1] Banaszkiewicz M. Steam turbines start-ups principles of steam turbines start-ups. Transactions of the Institute of Fluid Flow Machinery 2014;126:169-198.
  • [2] Banaszkiewicz M. On-line monitoring and control of thermal stresses in steam turbine rotors. Applied Thermal Engineering 2016;94:763-776. doi:10.1016/j.applthermaleng.2015.10.131.
  • [3] Jalali A, Amiri Delouei A. Failure analysis in a steam turbine stop valve of a thermal power plant. Engineering Failure Analysis 2019;105:1131-40. doi:10.1016/j.engfailanal.2019.07.057.
  • [4] Li F, Quay B, Wang P, Santavicca D.A, Wang W, Xu S. Transient thermal behaviors of a scaled turbine valve: Conjugate heat transfer simulation and experimental measurement. Int. J. Heat Mass Transf 2019;141:116–28. https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.053.
  • [5] Issues of design and operation of boilers and turbines for supercritical coal units. Gliwice: Publishing House of the Silesian University of Technology, 2010, Kosman G, Rusin A, Taler J, Pawlik A.
  • [6] Bryk M. Thermal-FSI analysis of rapid start-up of key components of thermal energy cycles in terms of cooperation with rSOC installation. 8th Wdzydzeanum Workshop on Fluid-Solid Interaction, U Grzegorza, Wdzydze Kiszewskie, Aug. 30-Sep. 3, 2021, Poland.
  • [7] Badur J, Lemański M, Kowalczyk T, Ziółkowski P, Kornet S. Zero-dimensional robust model of an SOFC with internal reforming for hybrid energy cycles. Energy 2018;158:128-138.
  • [8] Kotowicz J, Jurczyk M, Węcel D, Ogulewicz W. Analysis of Hydrogen Production in Alkaline Electrolyzers. Journal of Power Technologies 2016;96:149-156.
  • [9] Hyrzyński R, Karcz M, Lemański M, Lewandowski K, Nojek S. Complementarity of wind and photovoltaic power generation in conditions similar to Poland. Acta Energetica 2013;17:14-21. doi:10.12736/issn.2300 3022.2013402.
  • [10] Kowalczyk T, Badur J, Ziółkowski P, Kornet S, Banaś K, Ziółkowski P.J. The problem of thermal plant flexibility under the conditions of dynamic RES development. Acta Energetica 2017;31:116-26. doi:10.12736/issn.2300-3022.2017209.
  • [11] Milewski J, Dadyda K, Szabłowski Ł. Compressed Air Energy Storage Systems. Journal of Power Technologies 2016;96:245-260.
  • [12] Kowalczyk T, Badur J, Bryk M. Energy and exergy analysis of hydrogen production combined with electric energy generation in a nuclear cogeneration cycle. Energy Conversion and Management 2019;198. doi:10.1016/j.enconman.2019.111805.
  • [13] Lepszy S, Chmielniak T, Mońka P. Storage system for electricity obtained from wind power plants using underground hydrogen reservoir. Journal of Power Technologies 2017;97:61-68.
  • [14] Jurczyk M., Rulik S., Bartela Ł.: Thermal energy storage in rock bed - CFD analysis. Journal of Power Technologies 2020;100:301-307.
  • [15] Nikolaidis P., Poullikkas A.: A comparative review of electrical energy storage systems for better sustainability. Journal of Power Technologies 2017;97:220-245.
  • [16] Ziółkowski P, Badur J, Ziółkowski P.J. An energetic analysis of a gas turbine with regenerative heating using turbine extraction at intermediate pressure - Brayton cycle advanced according to Szewalski's idea. Energy 2019;185:763-786. https://doi.org/10.1016/j.energy.2019.06.160
  • [17] Ziółkowski P, Kowalczyk T, Lemański M, Badur J. On energy, exergy, and environmental aspects of a combined gas-steam cycle for heat and power generation undergoing a process of retrofitting by steam injection. Energy Conversion and Management 2019;192:374-384.
  • [18] Ziółkowski P, Kowalczyk T, Kornet S, Badur J. On low-grade waste heat utilization from a supercritical steam powerplant using an ORC-bottoming cycle coupled with two sources of heat. Energy Conversion and Management 2017;146:158-173. 173.https://doi.org/10.1016/j.enconman.2017.05.028
  • [19] Kowalczyk T, Badur J, Ziółkowski P. Comparative study of a bottoming SRC and ORC for JouleeBrayton cycle cooling modular HTR exergy losses, fluid-flow machinery main dimensions, and partial loads. Energy 2020;206. https://doi.org/10.1016/j.energy.2020.1180723
  • [20] Dudda W., Bryk M., Banaszkiewicz M., Badur J.: On a comparison of Huber-Mises-Hencky with Zawadzki equivalent stress for a steam turbine blade during nonstationary thermal load. AIP Conf Proc 2020;2239. https://doi.org/10.1063/5.0007831.
  • [21] Badur J, Bryk M. Accelerated start-up of the steam turbine by means of controlled cooling steam injection. Energy 2019;173:1242-55. https://doi.org/10.1016/j.energy.2019.02.088.
  • [22] Badur J, Bryk M. Thermal-FSI modeling of the steam turbine accelerated start-up by means of cooling steam injection control. Journal of Power Technologies 2020;100:115-119.
  • [23] Wieghardt K. Siemens Steam Turbine Design for AD700 Power Plants. AD700 Copnference Milan, 2015.
  • [24] Arrel D. Next Generation Engineered Materials for Ultra Supercritical Steam Turbines. Final Technical Report, Siemens Orlando, 2006.
  • [25] Orłoś Z, Augustyn M, Dobrociński S, Leitner P, Tomaszewski K. Experimental studies of temperature fields, deformation and stress state under stationary and non-stationary heat loads. Theoretical calculations of thermal stress. Warsaw Military University of Technology, 1980 (in Polish).
  • [26] Pięć wykładów ze współczesnej termomechaniki płynów. Wydawnictwo IMP PAN w Gdańsku, 2005, Badur J.
  • [27] Ziółkowski P.J, Ochrymiuk T, Ermeyev V.A. Adaptation of the arbitrary Lagrange–Euler approach to fluid-solid interaction on an example of high velocity flow over thin platelet. Continuum Mechanics and Thermodynamics 2021;33:2301-2314.
  • [28] Kornet S, Ziółkowski P, Jóźwik P, Ziółkowski P.J, Stajnke M, Badur J. Thermal-FSI modeling of flow and heat transfer in a heat exchanger based on minichanels. Journal of Power Technologies 2018;97:373-381.
  • [29] Badur J, Ziołkowski P, Kornet S, Kowalczyk T, Banaś K, Bryk M, Ziółkowski P.J, Stajnke M. Enhanced energy conversion as a result of fluid-solid interaction in micro and nanoscale. Journal of Theoretical and Applied Mechanics 56:329-32.
  • [30] Nikonowicz Ł, Milewski J. Determination of electronic conductance of solid oxide fuel cells. J Power Technol 2011;91:82-92.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-47048e23-6732-4072-96d7-f26192aa99fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.