PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Fast terminal synergetic based control of Coleman-Hodgdon hysteresis model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new fast terminal synergistic controller for trajectory tracking of a P.E.A. piezoelectric positioning mechanism with a Coleman-Hodgdon hysteresis model is proposed in this manuscript. The control proposed in this paper is based on classical synergistic control, it is considered a powerful robust control design methodology, with a choice of nonlinear macrovariable can often be adjusted appropriately to achieve a fast convergence rate, the system states can reach the equilibrium point in a finite time. The proposed control law is capable of handling disturbances and uncertainties, which allows the system state to converge in finite time. The implementation conditions of the control developed in this work are studied and the closed-loop stability is guaranteed by the Lyapunov synthesis. A comparison between the terminal fast synergetic control and the classical synergetic control shows the efficiency and robustness of the proposed control in terms of overshoot and response time and that the performance errors of the terminal fast control are improved.
Rocznik
Strony
227--234
Opis fizyczny
Bibliogr. 29 poz., wykr.
Twórcy
autor
  • Dept of Electrical Engineering Faculty of Technology, University of Batna 2, 5000, Batna, Algeria
  • Department of Electrical Engineering University of Moncton, Moncton, Canada.
  • Dept of Electrical Engineering Faculty of Technology, University of Batna 2, 5000, Batna, Algeria
Bibliografia
  • [1] Arteconi A., Gu S Pan., Zhu J., Wang Y., Feiyu Yang and Ru C.: A piezoelectric stick-slip drive nano positioner with large velocity under high load AIP Advances, 10, no. 10, 2020, s.148-153.
  • [2] Qian L and Chen X.: Application of piezoelectric actuator in series nano positioning stage, Sage. Journal, Science Progress, 103, no. l, 2020.: Application of piezoelectric actuator in series nano positioning stage, Sage. Journal, Science Progress, 103, no. 1, 2020.
  • [3] Dong H., J, Li Tj, Wang Z.W and Ning Y.M.: Design and experiment of a piezoelectric actuator based on inchworm working principle, Sensors and Actuators. A: Physical. 306, no 1, 2020, s.l-10.
  • [4] Kouichi K, Masaki H,Sizuo I and Takafumi F.:Application of large-scale active micro vibration control system using piezoelectric actuators to semiconductor manufacturing equipment, Smart Structures and Materials. Industrial and commercial Applications of Smart Structure Technologies. 3044, 1997.
  • [5] S. Watanabe and T.Ando .: high-speed XYZ-nano positioner for scanning ion conductance microscopy. Appl. Phys.Lett, 111, no,26,2017. [6] I. Cheuk., W.F,Shek., N Ch and A Ruohao .: Microfluidic single-cell analysis-Toward integration and total on-chip analysis, Bio microfluidics. Fundamentals Perspectives et applications.14, no. 2, 2020.
  • [7] Zedong Hu., Ying F, Junjie F., and Yuxia Y.: Guaranteeing Preselected Tracking Control of Loaded Piezoelectric-actuated Micro-Positioning Platform,.IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM), 2019.
  • [8] Yussif Yussif MA .. ,Gang Li and Ling.: Towards robust reduction of nonlinear errors in dynamic spectrum spectroscopy for effective noninvasive optical detection of blood components. Infrared Physics & Technology. 121,2022.
  • [9] H. Ahrens and H.K Khalil..:Closed-loop behavior of a class of nonlinear systems under EKFbased control. IEEE Trans. Automat. Contr. 52, no. 2,2007, s.536-540.
  • [10] D.Astolfi., Astolfi and L. Marconi.: A high-gain nonlinear observer with limited gain power.IEEE Trans. Automat. Contr. 60, no.11, 2015, s. 3059-3064.
  • [11] Qinqiang G and Xianmin Z.: A review of nonlinear hysteresis modeling and control of piezoelectric actuators. AIP Advances. 9, no. 4, 2019.
  • [12] Tadeuse K.: Inverse systems of linear systems. Archives of Electrical Engineering. 59, no.3-4, 2010, s. 203-216.
  • [13] Min M, Zhao F and Xiaohui X.: Disturbance observer-based model prediction control with real-time modified reference for a piezo-actuated nano positioning stage.42, no 4, 2019.
  • [14] Jingyang Y., Peter D M., Lu S and Xian D.: LSM-Based Model Predictive Control of Piezoelectric Motion Stages for Autofocus. IEEETransactios on Industrial Electronicc.70, no,6,2023, s. 6209-6218.
  • [15] Yi-Liang., Y Hsuan -Wei P and Yuan-Hang S.: Model-Free Output-Feedback Sliding-Mode Control Design for Piezo-Actuated Stage. Machines. 11, no. 2,2023, s. 1-12.
  • [16] A.Ounissi., A.Kaddouri., MS
  • [17] 0goun and R.Abdessmed,.: Second Order Sliding Mode Controllers of Micro positioning Stage Piezoelectric Actuator with Coleman-Hodgdon Model Parameters. Rev.Roman Sci. Techn.-Electrotechn. Et Energ.67, no. 1,2022, s.41-46.
  • [18] Xie MY., Yu SD., Lin HP and Wu HT.: Improved Sliding Mode Control with Time Dely Estimation for Motion Tracking of cell Puncture Mechanism. IEEE Transactions on circuits and System 67, no. 9, 2020, s.3199-3210.
  • [19] Lee J., Chang P.H., Jin M.: Adaptive integral sliding mode control with time-delay estimation for robot manipulators. ITIE. 64, no. 8, 2017, s. 6796-6804.
  • [20] Guo-Yin., Gu, Li-Min Zhu.,Chun-Yi Su and Han Ding, Sergej Fatikov.: Proxy-Based SlidingModel Tracking Control of Piezoelectric actuators Nano positioning Stages IEEE/ ASME Transactions on Mechatronics. 20, no. 4,2015, s. 1956-1965.
  • [21] View -Chong T, Y.M.IAI, Chi K Tse.:Indirect Sliding Mode Control of Power Electronics. 23, no.2, 2008, s. 600-611.
  • [22] Duansong W., Min K., Gang Z., Xiaoling L.: Adaptive Second-order Fast Terminal SlidingMode Formation Control for Unmanned Surface Vehicules.J.Mar.Sci.Eng. 10, no,11,2022, s.1-20.
  • [23] A.Ounissi., A. Kaddouri and R. Abdessmed.: Synergetic control of micro-positioning stage piezoelectric, International Journal of Applied Power Engineering (IJAPE). 11, no.4, 2022,s. 264- 270.
  • [24] F Filiberto M., Eduardo S., Espinoza I G-H., Sergio Sand Rogelio L.: RobustTrajectorTracking for Unmanned Aircraft Systems using a Nonsingular Terminal Modified Super-Twisting Sliding Mode Controller. Journal of Intelligent & Robotic Systems.,2019, s. 55-72.
  • [25] Wang, S. Jiang., B. Chen, and H. Wu.: A new continuous fractional-order nonsingular terminal sliding mode control for cable-driven manipulators. Adv. Eng. Softw. 119, 2018, s. 21-29.
  • [26] View-Chong T., Y. M. Lai, Chi K., Tse, Luis. M-S, Chi-Kin. W. A Fast-Response Sliding-Mode Controller for Boost-Type Converters with a Wide Range of Operating Conditions. IEEE/ASME Transactions on industrial Electronics. 54, no. 6,2007, s. 3276- 3286.
  • [27] A.Ounissi., Marc L., A.Kaddouri.and R.Abdessmed.: PSO Based Parameter Identification of Coleman- Hodgdon Hysteresis Model of a Piezoelectric Actuator and PID Feedback Controller. Contemporary Engineering Sciences. 7, no. 4, 2014, s.179 - 192.
  • [28] S.P. Mangaiyarkarasi.,T.S.Ree R Enga R Aja.: "PSO based optimal location and sizing of SVC for novel multiobjective voltage stability analysis during N - 2-line contingency," Archives of Electrical Engineering. 63, no.4, 2014, S.535-550.
  • [29] I. Kondratiev., R.Dougal., G.Veslov and Kolesnikov.: Hierarchical Control for electromechanical systems based on synergetic theory. IEEE Control Applications, (CCA) & Intelligent Control, (ISIC), St. Petersburg.2009, s.495-500.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4702aeb7-42d1-4ac1-9856-61ebf2edf661
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.