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1. Introduction

Reliability, maintainability and testability (RMT) have been in-
tegral parts of the equipment design. Equipment testability level has 
effects on operational reliability and maintainability [3], which im-
proves the operational reliability and quick maintenance. For exam-
ple, shortening mean time to repair (MTTR) needs high requirements 
of fault detection and isolation capability. After years of theoretical 
researches and engineering practices, testability index has formed a 
complete system. It is reported that the number of testability index is 
as many as dozens[13]. From the point view of clear definition and 

easy demonstration, these testability indices, such as fault detection 
rate (FDR), fault isolation rate (FIR) and false alarm rate (FAR) etc., 
are widely used. 

In particular, FDR is one of the most widely used testability index 
in many engineering practices. FDR is a measure of the capability 
that faults or failures occurring in the system can be detected by pre-
scriptive test means. Briefly, FDR shows the system ability to indicate 
the occurred faults. FDR acts as the measure and constraint of the 
testability level in the design and demonstration phases. In the test-
ability design stage, FDR is the constraint of the product testability 
level. During this stage, the product purchaser usually proposes a con-
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Testability indices are used in the phases of testability design and testability demonstration. This paper focuses on fault detec-
tion rate (FDR), which is the most widely used testability index. Leading hypothesis suggests that the value of FDR of a system 
is usually a certain value. However, few attempts have been made to research the statistical characteristics of FDR. Considering 
the fault occurrence process and test uncertainty, FDR is time varying and a special statistical process. Under the assumption of 
perfect repairs, we build a fault occurrence model based on the renewal process theory. Supposing that test uncertainty is mainly 
induced by test fault, the renewal process is employed to depict the occurrence process of test faults. Simultaneously, we depict the 
process of test state change and then construct the fault detection logic based on the digraph model. Combining the fault occur-
rence model and the fault detection logic, we focus on the expectation of FDR, which is one of the key statistical characteristics. 
By comparison, we introduce the calculation method of expectation of FDR in two cases, including without considering test un-
certainty and considering test uncertainty. To validate the conclusions presented in this paper, we carry on a simulation case using 
an integrated controller. Based on the theoretic and simulating methods, the expectation of FDR tends to be a constant with the 
increase of time under the assumptions made in this paper. The statistical characteristic of FDR presented in this paper would be 
the basic theoretical guide to testability engineering.
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Wskaźniki testowalności wykorzystuje się w fazach projektowania oraz potwierdzania testowalności. Przedstawiony artykuł po-
święcony jest wskaźnikowi wykrywalności błędów (fault detection rate, FDR), który jest najczęściej stosowanym wskaźnikiem 
testowalności. Wiodąca hipoteza sugeruje, że wartość FDR dla danego systemu jest zwykle wartością pewną. Istnieje jednak 
niewiele badań na temat statystycznych własności FDR. Biorąc pod uwagę proces występowania błędów oraz niepewność pomia-
rów, współczynnik FDR można opisać jako zmienny w czasie specjalny proces statystyczny. Przy założeniu naprawy doskonałej, 
zbudowaliśmy model występowania błędów w oparciu o teorię procesu odnowy. Przyjmując, że niepewność testową wywołują 
głównie błędy testowe, wykorzystaliśmy proces odnowy do zobrazowania procesu występowania błędów testowych. Jednocześnie 
przedstawiliśmy proces zmiany stanu testu, a następnie zbudowaliśmy logikę wykrywania błędów w oparciu o model grafu skie-
rowanego. Łącząc model występowania błędów z logiką wykrywania błędów, opracowaliśmy metodę obliczania wartości ocze-
kiwanej FDR, która jest jedną z najważniejszych własności statystycznych tego wskaźnika. Dla porównania, metodę obliczania 
wartości oczekiwanej FDR zastosowaliśmy w dwóch przypadkach, z uwzględnieniem i bez uwzględnienia niepewności testowej. 
Aby zweryfikować wnioski przedstawione w niniejszej pracy, przeprowadziliśmy symulację z wykorzystaniem zintegrowanego 
kontrolera. Obliczenia teoretyczne i symulacja pokazują, że wartość oczekiwana FDR wraz z upływem czasu staje się wartością 
stałą w warunkach założonych w niniejszej pracy. Przedstawiona w artykule charakterystyka statystyczna FDR stanowi jedną z 
podstaw teoretycznych inżynierii testowej.

Słowa kluczowe: wskaźnik testowalności; wskaźnik wykrywalności błędów; proces odnowy; niepewność testu; 
własność statystyczna
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tract value of FDR. In the testability demonstration stage, the contract 
value of FDR is the measure to validate product testability level. In 
this stage, the purchaser would decide whether to accept or reject the 
product using the statistical sampling method [7, 22, 23]. In order to 
validate the value of FDR of a series of products, it is assumed that 
the real value FDR of a test product is a certain number when we use 
the statistical sampling method [25]. The statistical sampling method 
is the core theory of the quality inspection. In a quality inspection pro-
cedure, the only source of the statistical error is due to random sam-
pling. Currently, the demonstration test of FDR directly employs the 
theoretical assumptions adopted in the quality inspection. Therefore, 
if the FDR test based on the quality inspection theory can be used, it 
must accord to the assumption that the real value of FDR is an existing 
certain value and do not change. Moreover, the truth is that we pay lit-
tle attention to the statistical characteristics of FDR. Accordingly, the 
research on statistical characteristics of FDR is crucial paramount. 

FDR is a rate, which reflects the capability of automatic fault in-
dication. Intuitively, the process of fault detection includes two steps. 
The first step is a fault occurs in a system. The second step, a test 
means, for example a Built-in Test (BIT), detects the occurred fault 
and give an indication to the operating or maintenance personnel. 
Therefore, to achieve the statistical characteristics of FDR, we must 
have more understandings of the laws of equipment fault occurrence 
and fault detection. 

Modelling of fault occurrence is the key point of reliability and 
maintainability engineering [21]. The reliability level of a product is 
its inherent property, which decides the fault occurrence of a product. 
However, the fault occurrence process also depends on maintenance 
activities. For example, good maintenance activities can reduce the 
rate of occurrence of failure (ROCOF) [4]. On the contrary, poor 
maintenance actions would increase the ROCOF. From the point of 
view of existing testability engineering, the ROCOF of a product is 
considered to be constant and the fault interval obeys the exponential 
distribution [17]. Since the reliability tests carry out separately, test-
ability staff only can obtain product fault information using reliability 
prediction method. The stochastic process model is related to models 
of repairable systems in the reliability and maintainability literature 
[1, 26, 28]. The widely used stochastic process models for repairable 
systems are the Poisson process, the renewal process (RP), the gen-
eralized renewal process (GRP) and the nonhomogeneous Poisson 
process (NHPP) [4, 11, 26]. The renewal process is commonly used if 
all the maintenance repairs are preventive maintenance, bringing the 
system to a ‘‘good-as-new’’ state each time (known as perfect repair). 
The renewal process (RP) is widely used to depict the fault occurrence 
process in systems with perfect repairs. The maintenance model was 
established based on the theory of renewal process and the periodic 
inspection interval is optimized [21]. Ji et al. [8] introduced to cal-
culate time-varying failure probabilities based on a renewal-process-
based model. Kim et al. simulated the failure and repair cycle of a 
component based on the alternating renewal process[10]. Reference 
[29] proposed a fault sample simulation approach for virtual testabil-
ity demonstration test based on the renewal process theory.

The value of FDR is affected not only by the number of fault oc-
currence but also by the relationships of tests and faults. From a math-
ematical viewpoint, the dependency matrix (D matrix) can describe 
the certain relationship among faults and tests[5]. In a dependency 
matrix, the corresponding element in the D matrix is one when a test 
can detect a fault. On the contrary, the matrix element is zero when 
a fault is undetectable by a test. Considering the actual practice and 
theoretical study, the relation between a fault and a test is not purely 
zero or one. This relationship between fault and test is called as the 
uncertainty relation, also known as the test uncertainty. In this case, 
the relationship between a test and a fault can be depicted by a decimal 
between zero to one. Such D matrix is called the uncertainty depend-
ency matrix. Reference [5] focuses on building the diagnostic strategy 

based on the uncertainty correlation matrix. For the studies of sources 
of test uncertainty, reference [9] investigates that sensor faults are the 
main reasons causing the test uncertainty. References [18-20] focus 
on solving real-time multi-fault diagnosis problem using the theory of 
imperfect test. The definition of imperfect test is also a way to depict 
test uncertainty. They define the probability of detection and prob-
ability of false alarm to describe the test uncertainty. Accordingly, the 
relationship between a test and a fault is often uncertain. Generally, 
the test certainty is only the special case.

FDR is an important indicator of the testability level of a product. 
As a statistical and time varying parameter, its statistical characteris-
tics are the main points of this paper. This paper proceeds as follow. 
Section 2 analyses the existing FDR test theory and describes the sta-
tistical property of FDR. Section 3 models the fault occurrence proc-
ess using the renewal process theory. Test uncertainty based on the test 
fault model is described in Section 4. In Section 5, the expectation of 
FDR as the key stochastic characteristic is discussed. Section 6 gives 
a specific simulation example. Conclusions are given in Section 7.

2. Problem description

2.1. Existing test theory of FDR

The demonstration of FDR is carried out by artificially inject-
ing faults into equipment. Then, the purchaser makes an acceptance/
rejection decision according to the contractual requirement of FDR. 
The existing demonstration theory of FDR is mainly based on the 
sampling plan by attributes or sequential probability ratio test [15, 
24]. The demonstration test of FDR is a Pass/Fail test. It means that 
each time of the test has two results, including successful detection or 
failed detection. The basic idea of the demonstration test of FDR is the 
receiver operating characteristic curve [6]. The characteristic curve 

( )L p  can be written as eq. (1). ( )L p  is the probability { }P f c≤

of an event f c≤ . Let f  denote the number of failed tests of fault 
detection. The event f c≤  denotes f  is smaller or equal to a speci-
fied positive integer c:

 
0

( ) (1 )
c

i n i i
n

i
L p C p p−

=
= −∑  (1)

where n  is the number of test samples, c  is the maximum number of 
allowable failed sample and p  denotes the probability of success.

Using the sampling plan by attributes or sequential probability 
ratio test to carry on the FDR demonstration test, we must accept the 
implicit assumption that the FDR value of a system is a constant de-
picted as the parameter p  in eq. (1). However, researchers have never 
proved this hypothesis theoretically or using FDR statistical data from 
the field. In order to validate the availability of this assumption, the 
statistical model of FDR would be built in next section.

2.2. Statistical model of FDR

FDR is defined as a rate, which the number of successfully de-
tected faults is divided by the total number of occurred faults during 
the specified time interval. According to its definition, FDR is time 
varying. Here we use the notation ( )FDR t  to represent fault detection 
rate at time t  and ( )FDR t  can be calculated as follows [30]:

 ( )( )
( )

DN tFDR t
N t

=  (2)
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where ( )N t  denotes the total occurred number of faults at time t  

and ( )DN t  denotes the total number of correctly detected faults at 

time t . Generally, the relationship of ( )N t  and ( )DN t  must satisfy 

( ) ( )DN t N t≥ .

Let 1 2{ , ,..., }nF F F F=  denotes a fault set in a system. It means 
that faults occurred in this system are categorized as n  groups. Gen-
erally, one of the groups is called a failure mode and we use the term 

fault to instead. As shown in Fig. 1, each fault iF  independently oc-

curs at time ( 1,2,...)j
it j = , where unfilled squares denote success-

fully detected faults and filled circles denote the undetected faults. Let 

( )
iFN t  denote the total occurred number of the fault iF  at time inter-

val [0, ]t . Let ( )
i

D
FN t  denotes the total number of correctly detected 

of the fault iF  at time interval [0, ]t . Accordingly, the calculation of 
( )FDR t  can be further rewritten as follows:
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 (3)

where 
1

( ) ( ) / ( )
iF Ft N t N tλ =  can be defined as an occurring weight, 

which denotes the proportion of occurred number 
1
( )FN t  of the fault 

iF  to ( )N t . The proportion 
1 1

( ) ( ) / ( )
i

D
F F Fr t N t N t=  can be defined as 

the detection probability of the fault iF . The values ( )
iF tλ  and ( )

iFr t  
lie in an interval [0,1] .

From eq. (3), we can clearly find that the value of ( )FDR t  would 
be higher if occurring weights of the detectable faults increase. Here, 

the detectable faults mean that their detection probability ( )
iFr t  is not 

equal to zero. From the definition of eq. (2), ( )FDR t  always lies in 

the interval [0,1] . As random variables ( )N t  and ( )DN t  are time 
varying, ( )FDR t  can be called a statistical process. As shown in Fig. 
2, ( )FDR t  fluctuates between zero to one. The dotted lines are the 
samples of ( )FDR t . The heavy line is the expectation [ ( )]E FDR t  
of the samples of ( )FDR t . From the statistical views, we must pour 
much attention to the statistical characteristics of ( )FDR t , such as the 
expectation [ ( )]E FDR t . Therefore, the trend and the statistical char-
acteristics of ( )FDR t  would be the key points in following sections.

3. Fault occurrence model based on renewal process

The fault occurrence process is not only affected by its reliabil-
ity level, but also affected by maintenance activities. Especially for 
repairable weapons and equipment, they have finite lifetimes that 
may require corrective maintenance during their lifetimes. During 
the whole life cycle, their fault occurrence situations should take the 
effects of maintenance activities into account. According to the ef-
fects on fault occurrence from the maintenance activity, maintenance 
activities can be divided into five categories [26]. Under the assump-
tion of perfect repairs for repairable system, the system is assumed to 
restore to a ‘good-as-new’ state each time. Under this maintenance 
strategy, renewal process is wildly used to depict the fault occurrence 
processes [27, 28].

In a renewal process, ( )N t  denotes the number of faults occurred 
during time interval [0, ]t . It is a counting process, which has the fol-
lowing properties.

( ) 0N t ≥(1) .
The value of (2) ( )N t  is an integer and increases monotonically.
At different times (3) t  and s ( s t> ), the number of occurred 
fault is denoted as ( ) ( )N s N t−  during the interval [ , ]t s . In a 
counting process, if the value of ( ) ( )N s N t−  is only related 
to the length of the interval [ , ]t s  and has no relation with the 
starting count time t  , this counting process is called an inde-
pendent increment process.

A sample of counting process of fault occurrence is illustrated 

in Fig. 3. The fault occurrence times are 1 2 3( , , , )t t t  . We ignore the 

Fig. 1. Counting processes of fault detection in multiple faults system

Fig. 2. Time varying characteristic of FDR

Fig. 3. Counting process of fault occurrence



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol.18, No. 3, 2016460

sciENcE aNd tEchNology

repair time, i.e., the system is repaired and put into new operation 

immediately after a fault. Let it  denote the occurring time of the thi  

fault. The interval 1( 1,2, )i i it t t i−∆ = − =   denotes the time interval 

length between the ( 1)thi −  fault and thi  fault. Specially, 0 0t = . 
We use the term interarrival time to depict the time interval between 

two successive faults. All of the interarrival times { | 1,2,...}it i∆ =  are 
considered independently and identically distributed. The thn  fault 

occurrence time nt  can be written as:

 
1

n
n i

i
t t

=
= ∆∑  (4)

In the renewal process, the fault interval it∆  obeys the same cu-
mulative distribution function ( )F t  of the interarrival time, namely 

( )it F t∆  [10]. Shortly, we define the interarrival time function ( )F t  
to instead. And the probability density function is ( ) ( )f t F t′= . The 

( )F t  may be the exponential distribution, Weibull distribution, log-
normal distribution and Gamma distribution etc. Supposing that ( )F t  
obeys exponential distribution, the renewal process degenerates into 
a Poisson process. According to the current testability demonstration 
theory, the assumption that the interarrival time function is an expo-
nential distribution represents that the fault occurrence process is a 
Poisson process. However, the Poisson process is just a special form 
of the renewal process[16]. Therefore, it is more universal using the 
renewal process to describe the process of fault occurrence.

From the mathematical description of the renewal process, it 
can be described by a function ( )M t . ( )M t  is called the renewal 
function, which is defined as the expectation of ( )N t . It can be 
written as:

 

[ ]
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1
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=
∞

+
=

=
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= ≥ − ≥ +

= ≤ − ≤

∑

∑
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where { ( ) }P N t n=  denotes the probability of n  faults in [0, ]t  and 
=0,1,2,n 

.

The random variable nt  are the sum of n  independent and identi-

cally random variables it∆ , so we can rewrite ( )M t  as:

 

1

1

1

1
0
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∞
+
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∞

=
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where ( )nF t  denotes the -foldn  convolution of the time interval dis-

tribution function ( )F t . ( )nF t  is the probability that the thn  fault 

occurs at time t . From the above analysis, ( )F t , ( )nF t and ( )M t  
can determine each other. 

For the eq. (6), use the Laplace transform [16]:

 * * * *( ) ( ) ( ) ( )M s F s M s F s= +  (7)

where *( )M s  and *( )F s  are the Laplace transform of ( )M t  and 
( )F t  respectively.

Because ( ) ( )f t F t′= , so ( ) ( )f s sF s= . We can rewrite the eq.  
(7) as:

 
*

*
*
( )( )

1 ( )
F sM s

F s
=

−
 (8)

After obtaining the interarrival time function ( )F t , the renewal 
function ( )M t  can be calculated after the inverse Laplace transform 
of eq. (8).

4. Stochastic property modelling of fault detection

Realistically, the relationship between a fault and a test is uncer-
tain in the actual operation of a system. This section focuses on mod-
elling the test state change and describing fault detection logic.

The results of a test usually have three states, namely correct de-
tection, missed detection and false alarm. The correct detection means 
that the test indication is consistent with the system occurred fault. 
The missed detection refers to when there exist a failure, but the test 
does not give the right fault indication or have no indication at all. A 
false alarm represents that the test indicates a fault but there is no fault 
really occurred in a system. References [19, 20] define the fault detec-
tion probability and the missed detection probability respectively to 
depict test uncertainty. Considering the definition of ( )FDR t  accord-
ing to eq. (2), it only relates to the existed faults whether they can be 
detected or not. Therefore, the false alarms would not be considered in 
this paper. So we define a test have two states, including normal state 
(give right fault indication) and error state (give wrong fault indica-
tion or no indication at all). For the sake of simplicity, test states are 
categorized as {0,1} , where 1  denotes the normal state and 0 repre-
sents the error state.

Reference [2] considered a test appears error state mainly because 
of sensor failures. Simple to understand, sensor failures mean that a 
sensor or test circuit itself is in fault. Generally, the reliability level 
and maintenance strategy of the tests are same as the product itself. 
Therefore, it is considered that fault occurrence rule of the test is con-
sistent to product itself.

4.1. Digraph model of fault detection

In order to carry out the standardized description of fault detection 

in a system, 1 2{ , ,..., }nF F F F=  denotes a fault set, which has n  in-
dependent faults. The independence between faults refers to whether 
a fault occurs or not does not relate to any other faults in the fault 
set F  . In addition, the system has m  independent tests, which are 
grouped as a set 1 2{ , ,..., }mT T T T= . The independence of a test has 
two meanings. Firstly, it means that whether the test is in error or 
normal state keeps independent to other tests. Secondly, a test whether 
can detect an existing fault is irrelevant to other tests. The relation-
ships among faults and tests can be modelled by a digraph [20]. Fig.4 
illustrates a schematic digraph depicting these relationships. In Fig.4, 
the upper layer nodes represent faults and the lower nodes refer to 
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tests. In Fig. 4, if there exists the detection relationship between a fault 
and a test, there is a directed line connection between them. 

For notation convenience, we defined the relevant fault set 

( )jRFS T  of test jT . The set ( )jRFS T  denotes a group of faults can 

be detected by test jT . Mathematically, the set ( )jRFS T  must sat-
isfy:

   ( ) { | 1}j
i

T
j i i FRFS T F F F and r= ∈ =   (9)

where 1j
i

T
Fr =  denotes that there exists the physical detection relation-

ship between the test jT  and the fault iF . On the contrary, we define 

0j
i

T
Fr =  when the test jT  cannot detect the fault iF . As shown in 

Fig. 4, taking the test 2T  as an example, the relevant fault set of 2T  is 

2 2 3( ) { , }RFS T F F= . Generally, ( )jRFS T ≠ ∅ , where ∅  denotes an 
empty set.

Likewise, let ( )iRTS F  denote a relevant test set of the fault iF . 

The ( )iRTS F  is a group of tests which can detect the fault iF . The set 

( )iRTS F  must satisfy the condition:

   ( ) { | 1}j
i

T
i j j FRTS F T T T and r= ∈ =  (10)

As shown in Fig. 4, the relevant test set of 3F  is 3 2 3( ) { , }RTS F T T=  . 

If a fault iF  cannot be detected by any test, it satisfies ( )iRTS F = ∅  .

4.2. Modelling of test state change

The digraph model of between a test and a fault depict the static 
detection relationship. In this section, we model the test uncertainty 
based on the assumption of test state change. In reality, the state of a 
test could not be recognized automatically in the real situation. Gen-
erally, when a test does not give right indications to the occurred rel-
evant faults, maintenance staff will affirm that the test is in error state. 

It means that the test iT  would be repaired and its state switches to be 

normal only the fault in the set ( )iRFS T  occurs. Otherwise, the test 

iT  will keep its error state. Accordingly, we define a test state change 
process to depict a test repeatedly change its state from normal to er-
ror state then from error to normal state.

To describe the test uncertainty, test fault can be described by the 
same way as the description of the system fault occurrence. We de-
scribe the test fault occurring model using the renewal process. Let 

( 1,2,...)
i
j

Tt j =  denote the fault time sequence of the test iT . It means 

that the test state change from 1 to 0 at time ( 1,2,3,...)
i
j

Tt j = . The 

fault occurrence law of iT  can also described by the renewal function 

( )
iTM t . The meaning of ( )

iTM t  is consistent with the definition in 

Section 3. Simultaneously, let ( 1,2,3,...)
i
j

Tt j =  denote the repair time 

of iT . It means that the test state change from 0 to 1 at time 

( 1,2,3,...)
i
j

Tt j = .

Fig. 5 illustrates an example of state change process of a test 

iT . The ( )iRFS T  of iT  is 1{ , }i iF F + . As shown in Fig. 5, the 

fault time ( 1,2,...)
i
j

Tt j =  of iT  is decided by its interarrival time 

( 1,1,2,...)
i
j

Tt j∆ = . The repair time ( 1,2,...)
i
j

Tt j =  is related to the 

fault time of the faults in ( )iRFS T . Let min( | ( ( )) )
i
j

i Tt t RFS T t>  de-

note the minimum time of occurring time of the faults in ( )iRFS T  

after the thj  fault 
i
j

Tt  of the test iT . Consequently, the state change 

time of iT  can be depicted as follows:

 
, 1,2,...

min( | ( ( )) ),
i i i

i i

j j j
T T T

jk
T i T

t t t j

t t t RFS T t k j

 = + ∆ =


= > =





 (11)

Obviously, the fault time ( 1,2,...)
i
j

Tt j =  of the test iT  would al-

ternates with the repair time ( 1,2,...)
i
j

Tt j = , which forms the state 

change process of iT . 

4.3. Description of fault detection logic

Because of the existence of state change process of a test, the de-

tection probability of the fault iF  is less than 1. The event of fault 
detection can be modelled as follows.

For a fault iF , if it is not detected by any tests, namely 

( )iRTS F = ∅ , iF  would not be detected in any case. For a detect-

able fault iF , namely it satisfies ( )iRTS F ≠ ∅ . We define an event 

{ ( )}iA F t  which represents the detection outcome of iF  at the fault 

occurring time t . The event { ( )}iA F t  has two states { , }s f . Let s  

denote that iF  is successfully detected and f  represents the failed de-

tection. Simultaneously, let [ ( ( ))]iNormal RTS F t  denote the number 

Fig. 4. Digraph of fault detection relationships

Fig. 5. Schematic diagram of test state change
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of normal tests in set [ ( )]iRTS F t  at time t . Accordingly, we have the 
following relationship:

 { ( )} { [ ( ( ))] 1}i iA F t Normal RTS F t= ≥  (12)

where { ( [ ( )]) 1}iNormal RTS F t ≥  denotes the value of 

[ ( )]t
iNormal RTS F  must be more than or equal to 1.

Fig. 6 shows a fault detection process of fault iF . Its ( )iRTS F  

is the set 1{ , }i iT T + . The fault iF  occurs at 1 2 3{ , , }t t t . Accord-
ing to the fault detection logic depicted in eq. (11), the values of 

( [ ( )])iNormal RTS F t  at 1 2 3( , , )t t t  are 1, 2 and 0 respectively. So, re-

sults of the event { ( )}iA F t  at 1 2 3( , , )t t t  are ( , , )s s f .

5. Stochastic characteristics of FDR

In testability test engineering, we usually assume that tests have no 
uncertainty when the testability tests are carried out under laboratory 

conditions. It means that if the set ( )iRTS F  is nonempty, the fault iF  
can be detected at every time when it occurs. For comparison, we di-
vide in two cases to study the stochastic characteristic of ( )FDR t . In 
Case 1, we assume that every test keeps normal state all the time. And 
in Case 2, both the fault occurrence randomness and test uncertainty 
are considered. In two cases, the final aim is the calculation of the sta-
tistical characteristics of ( )FDR t . In this paper, we mainly focus on 
the expectation of ( )FDR t , which is denoted as [ ( )]E FDR t .

5.1. Case 1

In this case, we make the following assumptions.

In the fault set (1) 1 2{ , ,..., }nF F F F= , each fault occurrence proc-
ess obeys the renewal process;
The tests remain normal all the time. Namely, whether the fail-(2) 

ure mode iF  can be detected is determined. When a fault iF  is 

detectable, its detection probability 
iFr  is equal to one and iF  

can be detected at any time. Conversely, if a fault iF  is unde-

tectable, its detection probability ( )
iFr t  is equal to zero and iF  

is undetectable at any time.

Every fault (3) iF  must obeys the same form of the interarrival 

time function 1 2( ; , , )F t a a∆  . Only the distribution param-

eters 1 2, ,a a   are different for different faults.

As the above assumptions, we define the detectable fault set DF  . 

The set DF  must satisfy

   { | ( ) }D
i i iF F F F and RTS F= ∈ ≠ ∅   (13)

Let DF k=  represents the number of elements in the set DF  . 

According to the above assumption , ( )
iFr t  equals to one or zero. Ac-

cordingly, eq. (3) can be further described as:
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= ⋅

=

∑

∑
 (14)

where ( )
i

D
FN t  represents the occurred number of detectable fault iF  

at time t  and D
iF F∈ , ( )N t  denotes the occurred number of all 

faults.
The expectation [ ( )]E FDR t  can be calculated as follows:
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 (15)

However, the comprehensive and accurate calculation of eq. 
(15) is a formidable work. We suppose that the elements in set 

1 2{ , ,..., }mF F F F=  keep independent. Combing eq. (5), the expecta-
tion [ ( )]E FDR t  can be approximately calculated as follows:
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 (16)

where ( )D
iF

M t  refers to the renewal function of the detectable fault 
D

iF . ( )
iFM t  denotes the renewal function of fault iF .

From the above analysis, when the form of ( )F t  changes, ( )M t  
and [ ( )]E FDR t  would have different forms. Based on the above de-
scription, the calculation of ( )M t  is very complicated. Here, taking 
gamma distribution and exponential distribution for example, the cal-
culation process of [ ( )]E FDR t  is presented.

(1) ( )F t  obeys gamma distribution
Suppose that the interarrival time function ( )F t  is a gamma dis-

tribution, i.e.:

Fig. 6. Schematic diagram of fault detection process



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol.18, No. 3, 2016 463

sciENcE aNd tEchNology

 
1

0

( )( ) 1    ( 1,2,3 )
!

jk
t

j

tF t e k
j

λ λ−
−

=

 
= − = 

  
∑   (17)

The LS transform of ( )F t  is as follows:
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Combine with eq. (8):
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The inverse LS transform of equation  is as follows:

 
1 (1 )

1

1( ) [1 ]
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j
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jj
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λ ωωλ
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where 2 / ( 1,2,..., 1)ji k
j e j kπω = = −  is the distinct root of 1ks =  and 

i  is an imaginary order

From eq. (20), the limit of ( )M t  is:

 lim ( )
t

tM t
k
λ

→∞
=  (21)

According to eq. (21), ( )M t  can be approximately calculated as:

 ( ) tM t at
k
λ

≈ =  (22)

where /a kλ= . From eq. (22), ( )M t  increases linearly with the 
prolonging of time.

Combine eq. (16) and (22), [ ( )]E FDR t  can be calculated as:
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 (23)

where const  refers to a constant.
(2) ( )F t  obeys exponential distribution
When the interarrival time function ( )F t  is exponentially 

distributed, namely ( ) 1 tF t e λ−= − . It is a special situation of 

when ( )F t  obeys the gamma distribution and 1k = . In this case, 
[ ( )] ( )E N t t M tλ= = .

According to eq. (16), the value of [ ( )]E FDR t  can be calcu-
lated as:
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  (24)

For the other distribution forms, such as Weibull distribution, it 
is difficult to obtain the analytical expression of the renewal function 

( )M t . When the time interval t∆  obeys the interarrival time function 
( )F t , the interarrival time t∆  can be obtained using Monte Carlo 

simulation. Accordingly, we can use the Monte Carlo simulation to 
calculate ( )M t  and [ ( )]E FDR t .

The core of Monte Carlo method is the process of generating ran-
dom numbers. The method of generating random numbers includes the 
inverse distribution generation method and congruence method [12, 
14]. Using in the computer simulation, the most widely used method 
is the inverse distribution method. The procedure is as follows:

Calculate the inverse distribution Step 1 1( )t F U−∆ =  of the inter-
arrival time function ( )F t U∆ = .

Generate random numbers Step 2 1 2, , , ku u u  which obey a uni-
form distribution and the values of these numbers must lie 
between 0 to 1.

Calculating each Step 3 1 2, , ,i ku u u u∈   using 1( )i it F u−∆ =  , we 

can get the interarrival time series 1 2, ,..., kt t t∆ ∆ ∆ .

Under the assumption of certain test, the values of ( )M t  and 
[ ( )]E FDR t  are only affected by the number of occurred faults. Fig. 7 

illustrates the simulation procedure of a fault occurrence process.
The simulation can be concisely described as follows:

For the fault Step 1 iF  and its interarrival time function is ( | )iF t F  . 

Generate the fault interval ( 1,2,3,...)
i
j
Ft j∆ =  using the ran-

dom number generation method.

Calculate the fault time Step 2 
i

i
Ft  according to 1

i i i
j j j
F F Ft t t−= + ∆

 
, 

where 0 0
iFt = . When the 

i
j
Ft  reaches the maxt , stop the sim-

ulation of iF . Let maxt  denote the maximum time of fault 
occurrence.
Repeat the above two steps and obtain all the time sequences Step 3 

of fault in the set 1 2{ , ,..., }nF F F F= .

After the above of three steps, we obtain one sample of fault oc-
currence process. In order to calculate ( )M t  and [ ( )]E FDR t , we 
need repeat the simulation procedure. Here, we define the simulation 
time ST .
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(3) ( )F t  obeys Weibull distribution

When the interarrival time function is Weibull distribution, 

namely ( )( )=1- tF t e
αλ− and 0t ≥ . Generally, the parameters λ  and 

α  denote shape parameter and scale parameter respectively. Let 

[ ( )]
iFE N t  denote the expectation of cumulative number of a fault iF  

at time t . According to the fault occurrence simulation procedure, we 

simulate the [ ( )]
iFE N t  under four groups of representative distribu-

tion parameter as illustrated in Fig. 8. Fig. 8(a) depicts the probability 
density functions of four different distribution parameters. Fig. 8(b) 

illustrates four corresponding curves of [ ( )]
iFE N t . We can clearly 

find that each [ ( )]
iFE N t  increases linearly and can be approximately 

expressed as a function [ ( )]
iFE N t at= , where a  is a constant. Simi-

lar to the analysis of eq. (23), [ ( )]E FDR t  would tend to be a constant 

with the increase of time.
According to the theoretical and simulative method proposed in 

this section, when the fault occurrence process can be modelled by the 

renewal process and without considering test uncertainty, the value of 
[ ( )]E FDR t  tends to be a constant.

5.2. Case 2

In Case 1, we neglect the test uncertainty. In this case, we would 
consider the test uncertainty as depicted in Section 4. All for the as-
sumption made in Case 1 are applicable here. In addition, let 

1 2{ , ,..., }mT T T T=  the m  independent tests in a system. Every iT  in 

the T  will obeys the same interarrival time function 1 2( ; , , , )kF t b b b  , 

and only the distribution parameters 1 2, , , kb b b  are different for dif-

ferent tests.

As shown in eq. (12), the detection condition of the fault iF  must 

satisfy [ ( ( ))] 1iNormal RTS F t ≥ . Generally, we define a characteristic 

function ( )FD ⋅  which shows whether iF  can be detected. At time t , 

the detection state of the fault iF  can be written as:

 
1,   [ ( ( ))] 1

( ( ))
0,                                  

i
i

Normal RTS F t
FD F t

else
≥

= 


  (25)

Since we introduce the test uncertainty, the number of detected 
fault ( )

i
D
FN t  cannot calculate according to the theory of the renewal 

process. Therefore, obtaining analytical expression of [ ( )]E FDR t  is 
a formidable work. So we propose the simulation method to calculate 

[ ( )]E FDR t .

To verify the expectation of ( )FDR t , we must simulate the fault 
occurrence process and test state change process. In Case 1, we al-
ready introduce the simulation procedure of fault occurrence se-
quence. This section would give the simulation flowchart of test state 
change process.

First, let ( )jSC T  denote the state of test jT . When the jT  is in 
normal state, ( )==1jSC T . On the contrary, ( )==0jSC T  represent jT  
is in error state. As shown in Fig. 9, it depicts the simulation procedure 
of the test state change. It can be described as follows.

Fig. 7. Simulation flowchart of fault occurrence sequence 

Fig. 9. Simulation flowchart of the process of test state change

Fig. 8. [ ( )]
iFE N t  under different parameters of Weibull distribution
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Set the state change time label Step 1 1i = . From the above descrip-

tion, the length of time ( )i jt T∆  which a test jT  keep normal 

state is decided by its interarrival time function ( | )i jF t T∆  , 

namely ( ) ( | )i j i jt T F t T∆ ∆ . When ( )==1jSC T , the fault 

time 
j

i
Tt  of the test jT  can be calculated 1 ( )

j j
i i
T T j jt t t T−= + ∆  . 

Specially, 0 0
jTt = . At the time 

j
i
Tt , the jT  switches its state 

from normal to error.

When the state of test Step 2 jT  is error, namely 

( )==0jSC T
 
. As depicted in eq. (11), the repair time is 

min( | ( ( )) )  ( )
j j

k i
T j Tt t t RFS T t k i= > =

 
. Then, 1i i= + .

Repeat the above two steps. When Step 3 
j

i
Tt  or 

j
k

Tt  reaches maxt  , 
stop the simulation of test jT .
Repeat the above three steps, we would obtain a complete Step 4 
test state change sequence of jT . Similarly, we can obtain 
the other tests’ state change sequences.

After the simulation processes of fault occurrence and test state 
change, the vital step is the statistics the fault detection result. As de-

scribed above, the fault iF  occurs at time t , its detection state (deter-
mine whether the fault can be detected or not) is decided by eq. (25). So 

we can obtain the fault occurrences number ( )
iFN t  and successfully 

detected times ( )
i

D
FN t  in the interval [0, ]t . Likewise, complete the 

simulation processes of all of the faults in the set 1 2{ , ,..., }nF F F F=  . 

The total number occurred faults ( )N t  and detected faults ( )DN t  

can be calculated. Obtaining ( )N t  and ( )DN t , we can calculate the 
( )FDR t  according to eq. (2) and obtain a sample curve of ( )FDR t .

After the entire simulation, we obtain a sample curve of ( )FDR t . 
Repeating the above process ST  times, we would get ST  simulation 

samples 1 2{ ( ), ( ),..., ( )}STFDR t FDR t FDR t . Employ the moment esti-
mation method to calculate the expectation [ ( )]E FDR t  as follows:

 1
( )

[ ( )]

ST
i

i
FDR t

E FDR t
ST

==
∑

 (26)

After the whole simulation and calculation procedure, we obtain 
the [ ( )]E FDR t  and observe its change trend.

6. Simulation Case

To verify the theory and simulation method proposed in this pa-
per, an integrated controller in the missile control system is taken as 
study case. It is used to simulating its fault detection process. Simulta-
neously, simulating calculation of [ ( )]E FDR t  is carried on.

The integrated controller is a LRU (Line Replaced Unit) level 
product. Its main functions are outputting the drive and control signals 
to the four rudders. The test relationship in the integrated controller is 
shown in Fig. 10.

As illustrated in Table 1, the integrated controller has 11 failure 
modes 1 2 11{ , ,..., }F F F . The detection method means the way to detect 

a fault, where ATE refers to the automatic test equipment. iT  refers to 
the Built-in Test. The manual test means refers to detect a fault manu-
ally. The distribution parameter denotes the parameter of the interar-

rival time function ( | )iF t F∆ , where ( | )iF t F∆  obeys exponential 
distribution. During the simulation, we only count the fault which can 
be detected by BIT. 

The interarrival time functions of tests 1 2 3 4, , ,T T T T  are exponen-
tially distributed and the parameter of each ( | )iF t T∆  is 1.408(year).

As shown in Fig. 10, the integrated controller has four independent 
outputs. In addition, each output is control and drive signal to a spe-
cial rudder. In the integrated controller, there are four circuits (BIT) to 

monitor the 4-way signals. These four BITs denotes as 1 2 3 4{ , , , }T T T T  
respectively. The test digraph of the integrated controller is built as 

shown in Fig. 11. The upper nodes 1 2 11{ , ,..., }F F F  refer to faults. The 

lower nodes 1 2 3 4{ , , , }T T T T  refer to tests. The faults 1F  and 2F  cannot 

be detected by any test in 1 2 3 4{ , , , }T T T T . Specially, the fault 3F  can 

be detected by the tests 1 2 3 4{ , , , }T T T T .

Fig. 10. Test relationship in the integrated controller

Table 1. Fault information of the integrated controller

number Failure Mode Detection 
Method

Parameter of Interarrival 
Time Function (year)

1F 1553B bus com-
munication error ATE 0.963

2F Self-test function 
failure Manual test 0.079

3F All the rudder 
drive signals error 1 2 3 4, , ,T T T T 0.507

4F no Rudder 1 drive 
signal 1T 0.710

5F no Rudder 2 drive 
signal 2T 0.710

6F no Rudder 3 drive 
signal 3T 0.710

7F no Rudder 4 drive 
signal 4T 0.710

8F Error polarity sig-
nal to Rudder 1 1T 0.152

9F Error polarity sig-
nal to Rudder 2 2T 0.125

10F Error polarity sig-
nal to Rudder 3 3T 0.125

11F Error polarity sig-
nal to Rudder 4 4T 0.125
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In the above discussion, it is divided into two cases to study the 
statistical characteristics of the ( )FDR t . However, the simulation of 
two cases can be carried out together.

Set the simulation time 100ST =  and the maximum fault time to 

max 20(year)t = .

Firstly, generate the fault sequence sets of the 11 faults. 
Fig. 12 shows the fault occurrence counting processes of 

1 2 3 4 9{ , , , , }F F F F F . For the sake of clarity, it does not illustrate 
the fault occurrence counting processes of all the 11 faults. 
Each line in Fig. 11 represents a fault occurrence number 

( )
iFN t  of fault iF .
Secondly, repeat simulation of fault occurrence 100  times 

and obtain 100 samples of the fault occurrence processes.
Under the assumption certain test, the detected fault number 
( )DN t  is the sum of the occurred number of faults which can 

be detected. Here, a fault iF  can be detected when it satisfies 

( ) 1iRTS F ≥ . In the integrated controller, faults 3 11~F F  are de-

tectable and 1 2{ , }F F  are undetectable.
Fig. 13 indicates the expectation of total number of occurred 

and detected faults, denoted as [ ( )]E N t  and [ ( )]DE N t  respectively. 
Both [ ( )]E N t  and [ ( )]DE N t  approximately linearly increase with 
the increase of time. [ ( )]E FDR t  can be approximately seemed as the 

division of [ ( )]DE N t  and [ ( )]E N t . Accordingly, [ ( )]E FDR t  might 
gradually tend to a constant. According to the eq. (26), we can calcu-
late the [ ( )]E FDR t  under the assumption of certain test.

Fig. 14 shows simulation result of [ ( )]E FDR t , where the expecta-
tion [ ( )]E FDR t  changes over time and fluctuates acutely at early pe-
riod then gradually tend to be smoothed and stabilized. Then, we carry 
on the simulation process based on the assumption of test uncertainty. 
According to the test state change process and fault detection logic, 
we obtain four state change sequences of tests 1 2 3 4, , ,T T T T  and fault 

detection outcomes. As shown in Fig. 15, the state change of test 1T  
is displayed. Simultaneously, the fault occurrence and detection proc-

esses of 1 3 5 8( ) { , , }RFS T F F F=  are shown. The fault is labelled as a 
square when it is detected at occurring time. On the other hand, it is 
labelled as a filled circle when it is not detected at occurring time.

Next, we count the detected number of faults according to the 
fault detection logic. By comparison, the expectation values of total 
number of occurred faults and detected faults in two cases are dis-
played in Fig. 16. All the three curves have linear increasing charac-

Fig. 11. Test digraph of the integrated controller

Fig. 13. Expectation of total number of occurred and detected faults

Fig. 15. State change of 1T  and fault occurrence processes of 1( )RFS T

Fig. 16. Expectation of occurred and detected fault number in two cases

          Fig. 12. Example of fault occurrence counting process

Fig. 14. Time-varying process of [ ( )]E FDR t  under certain test assumption
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teristics. Considering test uncertainty in Case 2, the total number of 
detected faults is less than in Case 1.

In order to compare the [ ( )]E FDR t  in two cases, we display the 
[ ( )]E FDR t  curves in two cases in Fig. 17. As shown in Fig. 17, two 
[ ( )]E FDR t  curves have the same law. Both of them fluctuate acute-

ly at the earlier period and gradually get to be stabilised with the 
increase of time. According to the simulation results in two cases, 
the FDR real value of the integrated controller could be assumed to 
be a certain value.

7. conclusions

This paper mainly focuses on the expectation of the statistical 
process ( )FDR t , which is one of the most important statistical char-
acteristics. The works of this paper can be concludes as follows.

This paper constructs the fault occurrence model based on re-(1) 
newal process.
This paper presents the test uncertainty model based the real-(2) 
ity that test could be in fault and models the test state change 
process and fault detection logic.
We study the expectation of FDR in two cases, including con-(3) 
sidering test uncertainty and without considering test uncer-
tainty. In these two cases, the expectations of ( )FDR t  tend to 
be a constant along with the increase of time.
When a system obeys laws of fault occurrence and test uncer-(4) 
tainty proposed in this paper, we prove the effectiveness of 
the assumption that the FDR value of a system exists a cer-
tain value. Accordingly, the FDR value of this kind of systems 
could be evaluated by the existing theory of testability dem-
onstration. For systems with other fault occurrence laws, the 
effectiveness of the assumption needs further studies.

Fig. 17. Time-varying processes of the expectation of ( )FDR t  in two cases
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