Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Very well-known advantages of aluminum alloys, such as low mass, good mechanical properties, corrosion resistance, machining-ability, high recycling potential and low cost are considered as a driving force for their development, i.e. implementation in new applications as early as in stage of structural design, as well as in development of new technological solutions. Mechanical and technological properties of the castings made from the 3xx.x group of alloys depend mainly on correctly performed processes of melting and casting, design of a mould and cast element, and a possible heat treatment. The subject-matter of this paper is elaboration of a diagrams and dependencies between parameters of dispersion hardening (temperatures and times of solutioning and ageing treatments) and mechanical properties obtained after heat treatment of the 356.0 (EN AC AlSi7Mg) alloy, enabling full control of dispersion hardening process to programming and obtaining a certain technological quality of the alloy in terms of its mechanical properties after performed heat treatments. Obtained results of the investigations have enabled obtainment of a dependencies depicting effect of parameters of the solutioning and ageing treatments on the mechanical properties (Rm, A5 and KC impact strength) of the investigated alloy. Spatial diagrams elaborated on the basis of these dependencies enable us to determine tendencies of changes of the mechanical properties of the 356.0 alloy in complete analyzed range of temperature and duration of the solutioning and ageing operations.
Czasopismo
Rocznik
Tom
Strony
95--100
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
- Department of Production Engineering and Automation, University of Bielsko-Biała, ul. Willowa 2, 43-300 Bielsko-Biała, Poland
autor
- Department of Production Engineering and Automation, University of Bielsko-Biała, ul. Willowa 2, 43-300 Bielsko-Biała, Poland
Bibliografia
- [1] Pedersen, L. & Arnberg. L. (2001).The effect of solution heat treatment and quenching rates on mechanical properties and microstructures in AlSiMg foundry alloys. Metallurgical and Materials Transactions A. 32(3), 525-532. DOI: 10.1007/s11661-001-0069-y.
- [2] Górny, Z., Kluska-Nawarecka, S., Czekaj, E., Wilk-Kołodziejczyk, D. & Saja, K. (2104). Heuristic Model of the Mechanical Properties of a Hypoeutectic EN AC-42100 (EN AC-AlSi7Mg0.3) Silumin Alloy Subjected to Heat Treatment. Archives of Foundry Engineering. 14(4), 35-38.
- [3] Orłowicz, W., Tupaj, M. & Mróz, M. (2006). Selecting of heat treatment parameters for AlSi7Mg0,3 alloy. Archives of Foundry. 6(22), 350-357. (in Polish).
- [4] Pezda, J. (2014). Influence of heat treatment parameters on the mechanical properties of hypoeutectic Al-Si-Mg alloy. Metalurgija. 53(2), 221-224.
- [5] Pezda, J. (2011). Effect of T6 heat treatment on mechanical properties and microstructure of EN AB-42000 alloy modified with strontium. Archives of Foundry Engineering. 11(2), 169-174.
- [6] Pezda J. (2014). Effect of selected parameters of the heat treatment operations on technological quality of machinery components pored from silumins. Bielsko-Biała: Scientific Publication of ATH. (in Polish).
- [7] ASTM Standard B917/B917M-2001: Standard Practice for Heat Treatment of Aluminum-Alloy Castings from All Processes.
- [8] Metalcaster's Reference & Guide. (1989). Des Plaines: American Foundry Society.
- [9] Zolotorevsky, V.S., Belov, N.A. & Glazoff, M.V. (2007). Casting Aluminium Alloys. Oxford: Elsevier.
- [10] Davis, J. R. (1993). Aluminium and aluminium alloys. ASM Speciality Handbook, Ohio: ASM International.
- [11] ASM handbook. (1991). Heat treating. Ohio: ASM International.
- [12] Davidson, C.J., Griffiths, J.R. & Machin, A.S. (2002). The Effect of Solution Heat-Treatment Time on the Fatigue Properties of an Al-Si-Mg Casting Alloy. Fatigue & Fracture of Engineering Materials & Structures. 25, 223-230. DOI: 10.1046/j.8756-758x.2001.00490.x.
- [13] Shivkumar, S., et al. (1989). An experimental study to optimize the heat treatment of A356 alloy. AFS Transactions. 97, 791-810.
- [14] Emadi, D., Whiting, L.V. & Sahoo, M. (2003). Optimal Heat Treatment of A356.2 Alloy. Light Metals, The Minerals, Metals and Materials Society. 983-989.
- [15] Yoshida, K.A., & Arrowood, R.M. (1995). Microstructure and mechanical properties of A356 aluminum castings as related to various T6-type heat treatments. In TMS Annual Meeting. (pp. 77-88). Warrendale, PA, United States: Minerals, Metals & Materials Soc (TMS).
- [16] Zhang, D.L. & Zheng, L. (1996). The Quench Sensitivity of Cast Al-7 Wt Pct Si-0.4 Wt Pct Mg Alloy. Metallurgical and Materials Transactions A. 27(12), 3983-3991. DOI: 10.1007/BF02595647.
- [17] Peng, J., Tang, X., He, J. & Xu, D. (2011). Effect of heat treatment on microstructure and tensile properties of A356 alloys. Transactions of Nonferrous Metals Society of China. 21(9), 1950-1956. DOI:10.1016/S1003-6326(11)60955-2.
- [18] Merlin, M. & Garagnani, G.L. (2009). Mechanical and microstructural characterisation of A356 castings realised with full and empty cores. Metallurgical Science and Technology. 27(1), 21-30.
- [19] Möller, H., Govender, G. & Stumpf, W.E. (2010). Application of shortened heat treatment cycles on A356 automotive brake calipers with respective globular and dendritic microstructures. Transactions Nonferrous Metals Society of China. 20(9) 1780-1785.DOI:10.1016/S1003-6326(09)60374-5.
- [20] Poniewierski Z. (1989). Crystallization, structure and properties of silumins. Warszawa: WNT. (in Polish).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46ea59ae-a7bf-4a26-9af1-e9be55fabcc4