PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analytical design of Spoke Internal Permanent Magnet machines using polar-consistent approximation of cubic subdomains

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Finite element modeling is the main tool in the design of internal permanent magnet electric machines for which accurate analytical designs are hard to be developed. Despite the high accuracy, the main drawback of this type of numerical modeling is the immense burden of calculation and time especially for implementation of complex structures. On the other hand, most of the fast analytical methods have been ineffective in accurate modeling of Internal Permanent Magnet (IPM) machines. This inefficiency is due to the complexity of the IPM segments and their inconsistency with other polar subdomains in rotary machines. In this research, one successful approach which divides the inconsistent domains into several polar-consistent subdomains is applied for fast and accurate analytical calculation of the quantities and objective functions. On the basis of this efficient analytical model and by evolutionary optimization tools, the loss and volume of a spoke PM machine are minimized, then the optimal machine is verified satisfactorily by the Finite Element Method (FEM).
Rocznik
Strony
907--926
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr., wz.
Twórcy
  • Department of Electrical and Computer Engineering, University of Hormozgan, Bandar Abbas, Iran
  • Department of Technical Study, Shiraz Electric Distribution Company, Shiraz, Iran
  • Department of Technical Study, Shiraz Electric Distribution Company, Shiraz, Iran
  • Department of Technical Study, Shiraz Electric Distribution Company, Shiraz, Iran
Bibliografia
  • [1] Bhaktha B. Sandesh, Anil Jogi, Jeyaraj Pitchaimani, Gangadharan K.V., Design and optimization of an external-rotor switched reluctance motor for an electric scooter, Materials Today: Proceedings (2023), DOI: 10.1016/j.matpr.2023.03.696.
  • [2] Zhang G., Yu W., Hua W., Cao R., Qiu H., Guo A., The Design and Optimization of an Interior, Permanent Magnet Synchronous Machine Applied in an Electric Traction Vehicle Requiring a Low Torque Ripple, Appl. Sci., vol. 9, 3634 (2019), DOI: 10.3390/app9173634.
  • [3] Supriya Naik, Baidyanath Bag, Kandasamy Chandrasekaran, Design optimization of Spoke IPM motor for improving efficiency using PSO and Rao-1 algorithm based FEA, Materials Today: Proceedings, vol. 80, part 2, pp. 400–408 (2023), DOI: 10.1016/j.matpr.2022.10.188.
  • [4] Wu H., Zhao W., Zhu G., Li M., Optimal Design and Control of a Spoke-Type IPM Motor with Asymmetric Flux Barriers to Improve Torque Density, Symmetry, vol. 14, 1788 (2022), DOI: 10.3390/sym14091788.
  • [5] Pouramin A., Dutta R., Rahman M.F., Design Optimization of a Spoke-Type FSCW IPM Machine to Achieve Low Torque Ripple and High Torque Density Under a Wide Constant Power Speed Range, 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, pp. 6914–6921 (2018), DOI: 10.1109/ECCE.2018.8558066.
  • [6] Demir Y., Ocak O., Aydin M., Design, optimization and manufacturing of a spoke type interior permanent magnet synchronous motor for low voltage-high current servo applications, 2013 International Electric Machines & Drives Conference, Chicago, IL, USA, pp. 9–14 (2013), DOI: 10.1109/IEMDC.2013.6556122.
  • [7] Yoon K.-Y., Hwang K.-Y., Optimal Design of Spoke-Type IPM Motor Allowing Irreversible Demagnetization to Minimize PM Weight, in IEEE Access, vol. 9, pp. 65721–65729 (2021), DOI: 10.1109/ACCESS.2021.3070747.
  • [8] Weiwen Ye, Yongqiu Liu, GuangmingWu, QifeiWu, Zhensen Chen, Zhensheng Chen, Zhenhua Li, Zhijie Cao, Design optimization and manufacture of permanent magnet synchronous motor for new energy vehicle, Energy Reports, vol. 8, Supplement 15, pp. 631–641 (2022), DOI: 10.1016/j.egyr.2022.10.136.
  • [9] Chengxu Sun, Qi Li, Tao Fan, Xuhui Wen, Ye Li, Low electromagnetic vibration design of double-layer interior permanent magnet machines for electric vehicle, Energy Reports, vol. 7, Supplement 6, pp. 147–156 (2021), DOI: 10.1016/j.egyr.2021.08.062.
  • [10] Phi Hung Nguyen, Emmanuel Hoang, Mohamed Gabsi, Bi-criteria optimization design of an interior permanent magnet synchronous machine for a hybrid electric vehicle application, Mathematics and Computers in Simulation, vol. 90, pp. 178–191 (2013), DOI: 10.1016/j.matcom.2012.08.008.
  • [11] Huang J., Fu W., Niu S., Zhao X., Bi Y., Qiao Z., A General Pattern-Based Design Optimization for Asymmetric Spoke-Type Interior PM Machines, Energies, vol. 15, 9385 (2022), DOI: 10.3390/en15249385.
  • [12] Yong Kong, Da Xu, Mingyao Lin, Efficiency modeling and comparison of surface and interior permanent magnet machines for electric vehicle, Energy Reports, vol. 9, Supplement 1, pp. 419–426 (2023), DOI: 10.1016/j.egyr.2022.11.030.
  • [13] Pourahmadi-Nakhli M., Rahideh A., Mardaneh M., Analytical 2-D Model of Slotted Brushless Machines with Cubic Spoke-Type Permanent Magnets, IEEE Transactions on Energy Conversion, vol. 33, no. 1, pp. 373–382 (2018), DOI: 10.1109/TEC.2017.2726537.
  • [14] Mohammad M.R., Kim K.T., Hur J., Design and analysis of a spoke type motor with segmented pushing permanent magnet for concentrating air-gap flux density, IEEE Trans. Magn., vol. 49, no. 5, pp. 1035–1038 (2013), DOI: 10.1109/TMAG.2013.2240664.
  • [15] Mohammad M.R., Kim K.T., Hur J., Design and optimization of neodymium-free spoke-type motor with segmented wing-shaped PM, IEEE Trans. Magn., vol. 50, no. 2, pp. 865–868 (2014), DOI: 1109/TMAG.2013.2282151.
  • [16] Boughrara K., Ibtiouen R., Takorabet N., Analytic calculation of magnetic field and electromagnetic performances of spoke type IPM topologies with auxiliary magnets, in Proc. Int. Conf. on Electr. Mach., pp. 51–57 (2014), DOI: 10.1109/ICELMACH.2014.6960158.
  • [17] Boughrara K., Ibtiouen R., Dubas F., Analytical prediction of electromagnetic performances and unbalanced magnetic forces in fractional-slot spoke-type permanent-magnet machines, in Proc. Int. Conf. Elect. Mach., pp. 1366–1372 (2014), DOI: 10.1109/ICELMACH.2016.7732702.
  • [18] Qiping S., Zhou Z., Li S., Liao X., Wang T., He X., Zhang J., Design and Analysis of the High-Speed Permanent Magnet Motors: A Review on the State of the Art, Machines, vol. 10, no. 7 (2022), DOI: 10.3390/machines10070549.
  • [19] Uler G.F., Mohammed O.A., Koh C.S., Utilizing Genetic Algorithms for the Optimal Design of Electromagnetic Devices, IEEE Transactions on Magnetics, vol. 30, no. 6, pp. 4296–4298 (1994), DOI: 10.1109/20.334066.
  • [20] Zhu Z., Zhu J., Zhu H., Zhu X., Yu Y., Optimization Design of an Axial Split-Phase Bearingless Flywheel Machine with Magnetic Sleeve and Pole-Shoe Tooth by RSM and DE Algorithm, Energies, vol. 13, 1256 (2020), DOI: 10.3390/en13051256.
  • [21] Ho S.L., Yang S., Ni G., Wong H.C., A particle swarm optimization method with enhanced global search ability for design optimizations of electromagnetic devices, IEEE Transactions on Magnetics, vol. 42, no. 4, pp. 1107–1110 (2006), DOI: 10.1109/TMAG.2006.871426.
  • [22] Chunyuan Liu, Rui Dong, Bao-lin Ye, Comprehensive sensitivity analysis and multi-objective optimization on a permanent magnet linear generator for wave energy conversion, Renewable Energy, vol. 198, pp. 841–850 (2022), DOI: 10.1016/j.renene.2022.08.102.
  • [23] Ho S.L., Yang S., Wong H.C., Cheng K.W.E., Ni G., An Improved Ant Colony Optimization Algorithm and Its Application to Electromagnetic Devices Designs, IEEE Transactions on Magnetics, vol. 41, no. 5, pp. 1764–1767 (2005), DOI: 10.1109/TMAG.2005.845998.
  • [24] Lucas S. Batista Felipe Campelo, Frederico G. Guimarães, Jaime A. Ramírez, Min Li, David A. Lowther, Ant colony optimization for the topological design of interior permanent magnet (IPM) machines, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33, iss. 3 (2014), DOI: 10.1108/COMPEL-08-2013-0285.
  • [25] Ho S.L., Yang S., Wong H.C., Ni G., A Simulated Annealing Algorithm for Multiobjective Optimizations of Electromagnetic Devices, IEEE Transactions on Magnetics, vol. 39, no. 3, pp. 1285–1288 (2003), DOI: 10.1109/TMAG.2003.810546.
  • [26] Fodorean D., Idoumghar L., N’diaye A., Bouquain D., Miraoui A., Simulated annealing algorithm for the optimisation of an electrical machine, IET Electric Power Applications, vol. 6, iss. 9, pp. 735–742 (2012), DOI: 10.1049/iet-epa.2011.0029.
  • [27] Basturk B., Karaboga D., An Artificial Bee Colony (ABC) Algorithm for Numeric Function Optimization, IEEE Swarm Intelligence Symposium, Indianapolis, USA (2006), DOI: 10.1007/s10898-007-9149-x.
  • [28] Greem Z.W., Kim J.H., Loganathan G.V., A new heuristic optimization algorithm: harmony search, Simulation, vol. 76, no. 2, pp. 60–68 (2001), DOI: 10.1177/003754970107600201.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46ea01f0-52e0-406c-9e6f-23d753b2c6f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.