PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shear Strength Enhancement of Cemented Reinforced Sand: Role of Cement Content on the Macro-Mechanical Behavior

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sands reinforced by hydraulic binders (cement) have constituted in recent decades a major asset for the expansion of several areas of engineering. The mechanical behavior of sand-cement mixtures has undergone some controversies studied on the Chlef sand. In this paper, we present an experimental study to investigate the mechanical behavior of a sandy soil reinforced by a hydraulic binder (cement), using the direct shear apparatus emphasizing on the shear strength characteristics and the vertical deformation variation of cemented reinforced sand. The parameters used in this study are mainly: relative density (Dr = 80%), normal stress (σn = 100, 200, 400 kPa), water content (3, 7 and 10%), cement content (2.5, 5, 7.5 and 10 %) and cure time (7, 14 and 28 days). The experimental results show that the mechanical characteristics in terms of internal cohesion (C) and internal frication angle (φ) give a better mechanical performance with the binder inclusion, and the cure conditions play an effective role on the improvement of the shear strength. This result also showed that 10% of the cement content gave us a maximum value of shear strength and an optimal influence on the mechanical characteristics. The addition of cement not only improves the shear strength of soil, but also provides diversity in the resistance against the deformations imposed load, which can be established by a dilatant character.
Wydawca
Rocznik
Strony
200--211
Opis fizyczny
Bibliogr. 45 poz., tab., rys.
Twórcy
  • LsmE Laboratory of Materials Sciences and Environment, Univ. UHBC Hassiba Benbouali of Chlef, 02091 Chlef, Algeria
  • Laboratory of Structures, Geotechnics and Risks, University Hassiba Benbouali of Chlef, Algeria
  • LsmE Laboratory of Materials Sciences and Environment, Univ. UHBC Hassiba Benbouali of Chlef, 02091 Chlef, Algeria
autor
  • LsmE Laboratory of Materials Sciences and Environment, Univ. UHBC Hassiba Benbouali of Chlef, 02091 Chlef, Algeria Henni, Ahmed Djafar
  • Laboratory of Structures, Geotechnics and Risks, University Hassiba Benbouali of Chlef, Algeria
Bibliografia
  • [1] Ahnberg, H., S.E. Johanson, H. Pihl and Carlsson T. (2003). Stabilising effects of different binders in some Swedish Soils. Ground Improvement. 7(1): 9–23.
  • [2] Amini Y, Hamidi A, Asghari E. (2013). Shear strength–dilation characteristics of cemented sand–gravel mixtures. International Journal of Geotechnical Engineering, 2014 VOL 8 NO 4.
  • [3] Aouali, N., Benessalah, I., Arab, A., Ali, B., Abed, M. (2018). Shear Strength Response of Fibre Reinforced Chlef (Algeria) Silty Sand: Laboratory Study. Geotech Geol Eng 2018. Https:// doi.org/10.1007/s10706-018-0641-5
  • [4] Arab A., (2008). Comportement des sols sous chargement monotone et cyclique. PhD diss., University of Sciences and Technology of Oran, Oran, Algeria
  • [5] Arab A., (2009). Comportement monotone et cyclique d'un sable limoneux. C. R. Mecanique 337, 621–631
  • [6] Arab A., Sadek M., Belkhatir M., Shahrour I. (2014). Monotonic preloading Effect on the Liquefaction Resistance of Silty Sand: a Laboratory Study. Arabian Journal for Sciences Engineering. 39:685–694. DOI 10.1007/s13369-013-0700-4
  • [7] Asghari, E., Toll, D., & Haeri, S., (2003). Triaxial behaviour of a cemented gravelly sand, Tehran alluvium. Geotechnical and Geological Engineering. 21 (1), 1–28.
  • [8] ASTM D 3080 (2005). Standard test method for direct shear test of soils under consolidated drained conditions, American Society for Testing and Materials, West Conshohocken, 2005.
  • [9] Baxter, C. D. P., Sharma, M. S. R., Moran, K., Vaziri, H. And Narayanasamy, R, (2011). Use of A ¯ = 0 as a Failure Criterion for Weakly Cemented Soils. J. Geotech. Geoenviron. Eng., 137, 161–170.
  • [10] Belkhatir, M.; Schanz T.; Arab A. (2013). Effect of fines content and void ratio on the saturated hydraulic conductivity and undrained shear strength of sand–silt mixtures, Environ. Earth Sci. (2013). doi:10. 1007/s12665-013-2289-z
  • [11] Benessalah, I., Arab, A., Sadek, M., Bouferra R. (2019). Laboratory study on the compressibility of sand–rubber mixtures under one dimensional consolidation loading conditions. Granular Matter (2019) 21: 7. https://doi.org/10.1007/s10035-018-0860-8
  • [12] Benessalah, I., Lambert, S., Villard, P., Arab, A. (2018). Effect of dynamics on the Soil-geosynthetic interfaces used in reinforced rockfall embankments. Rock slope stability symposium, Nov 2018, Chambéry, France. Rock slope stability, 2018.
  • [13] Benessalah I. (2017). Comportement des interfaces géosynthétiques sous chargement dynamique due à l'impact. PhD thesis, Faculty of Civil engineering & Architecture, University of Chlef 2017.
  • [14] Benessalah I., Arab A., Villard P., Merabet K., Bouferra R. (2016). Shear Strength Response of a Geotextile-Reinforced Chlef Sand: A Laboratory Study. Geotech Geol Eng 2016. 34 (6) : pp 1775–1790. Doi:10.1007/s10706-016-9988-7
  • [15] Benessalah I., Arab A., Villard P., Sadek M., Kadri A. (2015). Laboratory Study on Shear Strength Behavior of Reinforced Sandy Soil: Effect of Glass-Fibers Content and Other Parameters. Arab J Sci Eng. 2015. 41 (4) : pp 1343-1353. Doi:10.1007/s13369-015-1912-6
  • [16] Bennert, T., Maher, M., Jafari, F. & Gucunski, N. (2000). Use of dredged sediments from newark harbor for geotechnical applications. ASTM Special Technical Publication. 1374, 152–164.
  • [17] Bergado, D. (1996). Soft ground improvement: in lowland and other environments. American Society of Civil Engineers.
  • [18] Chew, S., Kamruzzaman, A. & Lee, F. (2004). Physicochemical and engineering behavior of cement treated clays. Journal of geotechnical and geoenvironmental engineering. 130, 696.
  • [19] Consoli, C. N., Prietto D. M., Ulbrich L. A, (1998). Influence of fiber and cement addition on behavior of sandy soil. Journal of Geotechnical and Geoenvironmental Engineering. ASCE. 124, 1211–1214.
  • [20] Consoli NC, Viana da Fonseca A, Cruz RC, Heineck KS, (2009). Fundamental parameters for the stiffness and strength control of artificially cemented sand. Journal of Geotechnical Engineering. 135(9):1347e53.
  • [21] Consoli NC, Cruz RC, Floss MF, (2010). Parameters controlling tensile and compressive strength of artificially cemented sand. Journal of Geotechnical and Geoenvironmental Engineering; 136(5):759e63.
  • [22] Consoli NC, Cruz RC, Floss MF, (2011). Variables controlling strength of artificially cemented sand: influence of curing time. Journal of Materials in Civil Engineering. 23(5):692e6.
  • [23] Coop, M. R., & Atkinson, J. H, (1993). The Mechanics of Cemented Carbonate Sands. Geotechnique , 43 (1), 53–68.
  • [24] Della N, Arab A, Belkhatir M (2011). A laboratory study of the initial structure and the overconsolidation effects on the undrained monotonic behavior of sandy soil from Chlef region in northern Algeria. Arab J Geosci. 4(5–6):983–991
  • [25] Della, N., Belkhatir M., Arab A., Canou J. and Dupla JC. (2014). Undrained Monotonic Response and Instability of Medium-Dense Sandy Soil. Marine Georesources and Geotechnology. 2014. 33 (6), 487-495. DOI: 10.1080/1064119X.2014.954175
  • [26] Djafer Henni A., Arab A., Belkhatir M., Hamoudi S.A., Khelafi H. (2011). Undrained behavior of silty sand: effect of the overconsolidation ratio. Arab J Geosci. doi:10.1007/s12517-011- 0365-9
  • [27] Dos Santos, A.P.S.; Consoli, N.C.; Heineck, K.S.; Coop,M.R. (2010). High-pressure isotropic compression tests on fibre-reinforced cemented sand. J. Geotech. Geoenviron.Eng. 136(6), 885–890
  • [28] Haeri, S. M., Hamidi, A., Hosseini, S. M., Asghari, E. And Toll, D. G, (2006). Effect of cement type on the mechanical behavior of gravely sand, Geotech. Geol. Eng. J., 24, 335–360.
  • [29] Hashimoto, H., S. Nishimoto and H. Hayashi, (2009). Investigation of improvement strength variation for the Trencher mixing method. Deep Mixing '09, Okinawa.
  • [30] Heathcote, K, and Piper R, (1994). Strength of Cement Stabilised Pressed Earth Blocks with Low Cement Contents. J. Proc. Roy. Soc. New South Wales, vol. 127, pp. 33–37.
  • [31] Hirabayashi, H., H. Taguchi, S. Tokunaga, N. Shinkawa, T. Fujita, H. Inagawa and N. Yasuoka, (2009). Laboratory mixing tests on cement slurry preparation, specimen preparation and curing temperature. Deep Mixing '09, Okinawa.
  • [32] Huang, J. T., & Airey, D. W, (1998). Properties of artifically cemented carbonate sand. Journal of Geotechnical and Geoenvironmental Engineering. pp 124 (6), 492–499.
  • [33] Kido, Y., S. Nishimoto, H. Hayashi and H. Hashimoto, (2009). Effects of curing temperatures on the strength of cement-treated peat. Deep Mixing '09, Okinawa.
  • [34] Lee MJ, Hong SJ, Choi YM, Lee W, (2010). Evaluation of deformation modulus of cemented sand using CPT and DMT. Engineering Geology. 115(1/2):28e35.
  • [35] Maher, M. And Ho, Y, (1993). Behavior of fiber reinforced cemented sand under static and cyclic loads. Geotechnical Testing Journal. 16(3), pp. 330–338.
  • [36] Marri A. Wanatowski D. and Yu H.S. (2010). Drained behaviour of cemented sand in high pressure triaxial compression tests. Procedia Geomechanics and Geoengineering. 7 (3), 159–174
  • [37] Mateus Forcelini, Gregório Rigo Garbin, Vítor Pereira Faro, Nilo Cesar Consoli. (2016). Mechanical Behavior of Soil Cement Blends with Osorio Sand. Procedia Engineering. Volume 143, 2016, Pages 75–81
  • [38] Merabet, K., Benessalah, I., Chemmam, M., Arab, A. (2019). Laboratory study of shear strength response of Chlef natural sand: Effect of saturation. Marine Georesources & Geotechnology. Online first: 11 May 2019. doi.org/10.1080/1064119X.2019.1595792
  • [39] Schnaid, F., Prietto, P., & Consoli, N, (2001). Characterization of Cemented Sand in Triaxial Compression. Journal of Geotechnical and Geoenvironmental Engineering. 127 (10), 857–868.
  • [40] Shahnazari H, Rezvani R, (2013). Effective parameters for the breakdown of limestone particles Sands: an experimental study. Engineering Geology. 159: 98-105.
  • [41] Sharma, M. S. R., Baxter, C. D. P., Hoffmann, W., Moran, K. And Vaziri, H, (2011). Characterization of weakly cemented sands using nonlinear failure envelopes. Int. J. Rock Mech. Min. Sci. 48, 146–151.
  • [42] Umesha,T.S., Dinesh,S.V., & Sivapullaiah, P.V, (2009). Control Of Dispersivity Of Soil Using Lime And Cement. International Journal Of Geology. Issue 1, Vol. 3, pp 9.8–16
  • [43] Venkatarama Reddy, B. V. And Gupta, A. (2005). Characteristics of soil-cement blocks using highly sandy soils. Materials and Structures. Vol. 38, No. 6, pp. 651–658.
  • [44] Walker, P. Strength, (1995). Durability and Shrinkage Characteristics of Cement Stabilised Soil Blocks. Cement & Concrete Composites. 17, 4, pp. 301. 310.
  • [45] Zillur Rabbi ATM., J. Kuwano, J. Deng , T. Wee Boon, (2011). Effect of curing stress and period on the mechanical properties of cement-mixed sand. Soils And Foundations. Japanese Geotechnical Society. vol. 51, no. 4, 651–661.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46e8bd2e-a2c3-48c3-a72a-e93637873a8e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.