Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A differential search algorithm (DSA) application, which is a metaheuristic inspired by nature, for total field aeromagnetic data caused by volcanoes over a 2D dipping dyke is presented. Inversion of the total magnetic anomalies was performed by adding the background level in addition to the parameters of the dyke model (e.g., dip angle, the depth to the top, half-width, the distance from the origin to the reference point, and amplitude coefficient), which are often tried to be estimated in the literature studies. In synthetic dyke models, the efficiency of the DSA in parameter estimation of theoretically generated magnetic anomalies that do not contain noise and contain random noise at different levels has been demonstrated. Firstly, in the synthetic dyke model, the efficiency of the DSA in parameter estimation of theoretically generated noise-free magnetic anomaly is demonstrated. Additionally, different levels of random noise were added to the same synthetic model anomaly to test the performance of the algorithm in case the data contained noise. The results of the inversion show that the model parameters estimated from the DSA agree well with the correct ones. This fit was also statistically checked by calculating the probability density function. In the real case, the inversion approach was then used to interpret five prominent total aeromagnetic anomalies over the well-known Kula volcanic field located in western Türkiye. The depths and widths of these magmatic bodies lying underneath these volcanic cones are about 450 m and 470 m, respectively.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1203--1224
Opis fizyczny
Bibliogr. 65 poz., rys., tab.
Twórcy
autor
- Department of Geophysical Engineering, Engineering Faculty, Dokuz Eylul University, 35160 İzmir, Türkiye
Bibliografia
- 1. Abdelrahman ESM, Abo-Ezz ER, Essa KS (2012) Parametric inversion of residual magnetic anomalies due to simple geometric bodies. Explor Geophys 43:178–189. https://doi.org/10.1071/EG11026
- 2. Al-Garni MA (2015) Interpretation of magnetic anomalies due to dipping dikes using neural network inversion. Arab J Geosci 8:8721–8729. https://doi.org/10.1007/s12517-014-1770-7
- 3. Alkan H, Balkaya Ç (2018) Parameter estimation by differential search algorithm from horizontal loop electromagnetic (HLEM) data. J Appl Geophys 149:77–94. https://doi.org/10.1016/j.jappgeo.2017.12.016
- 4. Anderson NL, Essa KS, Elhussein M (2020) A comparison study usingparticle swarm optimization inversion algorithm for gravity anomaly interpretation due to a 2D vertical fault structure. J Appl Geophys 179:104120. https://doi.org/10.1016/j.jappgeo.2020.104120
- 5. Ateş A, Kearey P, Tufan S (1999) New gravity and magnetic anomaly maps of Turkey. Geophys J Int 136:499–502. https://doi.org/10.1046/j.1365-246X.1999.00732.x
- 6. Balkaya Ç, Ekinci YL, Göktürkler G, Turan S (2017) 3D non-linear inversion of magnetic anomalies caused by prismatic bodies using differential evolution algorithm. J Appl Geophys 136:372–386. https://doi.org/10.1016/j.jappgeo.2016.10.040
- 7. Balkaya Ç, Kaftan I (2021) Inverse modelling via differential search algorithm for interpreting magnetic anomalies caused by 2D dyke-shaped bodies. J Earth Syst Sci. https://doi.org/10.1007/s12040-021-01614-1
- 8. Barbosa VCF, Silva JBC (1997) Medeiros WE (1997) gravity inversion of basement relief stabilized by equality constraints on depth. SEG Annu Meet 6:470–473. https://doi.org/10.1190/1.1885935
- 9. Beiki M, Pedersen LB (2012) Estimating magnetic dike parameters using a non-linear constrained inversion technique: an example from the Sarna area, westcentral Sweden. Geophys Prospect. https://doi.org/10.1111/j.1365-2478,2011.01010.x
- 10. Bhimasankaram VLS, Mohan NL, Rao SVS (1978) Interpretation of magnetic anomalies of dikes using Fourier transforms. Geoexploration 16:259–266. https://doi.org/10.1016/0016-7142(78)90015-7
- 11. Bilim F (2007) Investigations into the tectonic lineaments and thermal structure of Kutahya-Denizli region, western Anatolia, from using aeromagnetic, gravity and seismological data. Phys Earth Planet Inter 165:135–146. https://doi.org/10.1016/j.pepi.2007.08.007
- 12. Bilim F, Akay T, Aydemir A, Kosaroglu S (2016) Curie point depth, heat-flow and radiogenic heat production deduced from the spectral analysis of the aeromagnetic data for geothermal investigation on the Menderes Massif and the Aegean Region, western Turkey. Geothermics 60:44–57. https://doi. org/10.1016/j.geothermics.2015.12.002
- 13. Biswas A, Acharya T (2016) A very fast simulated annealing method for inversion of magnetic anomaly over semi-infinite vertical rod-type structure. Model Earth Syst Environ 2:1–10. https://doi.org/10.1007/s40808-016-0256-x
- 14. Biswas A, Parija MP, Kumar S (2017) Global nonlinear optimization for the interpretation of source parameters from total gradient of gravity and magnetic anomalies caused by thin dyke. Ann Geophys. https://doi.org/10.4401/ag-7129
- 15. Candan O, Dora O, Oberhänsli R, Çetinkaplan M, Partzsch JH, Friederike CW, Dürr S (2001) Pan-African high-pressure metamorphism in the Precambrian basement of the Menderes Massif, western Anatolia, Turkey. Int J Earth Sci 89:793–811. https://doi.org/10.1007/s005310000097
- 16. Chen CS (1999) TEM Investigations of aquifers in southwest coast of Taiwan. Ground Water 37:890–893
- 17. Civicioglu P (2012) Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Comput Geosci 46:229–247. https://doi.org/10.1016/j.cageo.2011.12.011
- 18. Constable SC, Parker KL, Constable CG (1987) Occam’s inversion a practical algorithm for generating smooth models from EM sounding data. Geophysics 52:289–300
- 19. Cooper GRJ (2012) The semi-automatic interpretation of magnetic dyke anomalies. Comput Geosci 44:95–99. https://doi.org/10.1016/j.cageo.2012.02.016
- 20. Dolmaz MN, Hisarli ZM, Ustaömer T, Orbay N (2005) Curie point depths based on spectrum analysis of aeromagnetic data, West Anatolian extensional province, Turkey. Pure Appl Geophys 162:571–590. https://doi.org/10.1007/s00024-004-2622-2
- 21. Dorigo M (1992) Optimization, learning and natural algorithms. PhD thesis, Dipartimento di Elettronica, Politecnico di Milano, Milan, Italie
- 22. Di MR, Milano L, Piegari E, Milano L (2020) Modeling of magnetic anomalies generated by simple geological structures through genetic-price inversion algorithm. Phys Earth Planet Inter 305:106520. https://doi.org/10.1016/j.pepi.2020.106520
- 23. Ekinci YL, Balkaya Ç, Göktürkler G (2019) Parameter estimations from gravity and magnetic anomalies due to deep-seated faults : differential evolution versus particle swarm optimization. Turkish J Earth Sci. https://doi.org/10.3906/yer-1905-3
- 24. Ekinci YL, Balkaya Ç, Göktürkler G, Özyalın Ş (2021) Gravity data inversion for the basement relief delineation through global optimization: a case study from the Aegean Graben System, western Anatolia, Turkey. Geophys J Int 224:923–944. https://doi.org/10.1093/gji/ggaa492
- 25. Ekinci YL, Balkaya Ç, Göktürkler G, Turan S (2016) Model parameter estimations from residual gravity anomalies due to simple-shaped sources using differential evolution algorithm. J Appl Geophys 129:133–147. https://doi.org/10.1016/j.jappgeo.2016.03.040
- 26. Ekinci YL, Özyalın Ş, Sındırgı P, Balkaya Ç, Göktürkler G (2017) Amplitude inversion of the 2D analytic signal of magnetic anomalies through the differential evolution algorithm. J Geophys Eng 14:1492–1508. https://doi.org/10.1088/1742-2140/aa7ffc
- 27. Eppelbaum LV (2015) Quantitative interpretation of magnetic anomalies from bodies approximated by thick bed models in complex environments. Environ Earth Sci 74:5971–5988
- 28. Erbek E (2021) An investigation on the structures and the basement depth estimation in the western Anatolia, Turkey using aeromagnetic data. Geosci J 25:891–902. https://doi.org/10.1007/s12303-021-0001-y
- 29. Essa KS, Elhussein M (2017) A new approach for the interpretation of self-potential data by 2-D inclined plate. J Appl Geophys 136:455–461. https://doi.org/10.1016/j.jappgeo.2016.11.019
- 30. Farquharson CG (2008) Constructing piecewise-constant models in multidimensional minimum-structure inversions. Geophysics 73(1):K1–K9. https://doi.org/10.1190/1.2816650
- 31. Gessner K, Gallardo LA, Wedin F, Şener K (2016) Crustal structure of the northern Menderes Massif, western Turkey, imaged by joint gravity and magnetic inversion. Int J Earth Sci 105:2133–2148. https://doi.org/10.1007/s00531-016-1324-1
- 32. Gobashy M, Abdelazeem M (2020) Minerals and ore deposits exploration using meta-heuristic based optimization. Contrib Geophys Geod 50:161–199. https://doi.org/10.31577/congeo.2020.50.2.1
- 33. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, MI
- 34. Kaftan I (2017) Interpretation of magnetic anomalies using a genetic algorithm. Acta Geophys 65:627–634. https://doi.org/10.1007/s11600-017-0060-7
- 35. Kara I (1997) Magnetic interpretation of two-dimensional dikes using integration-nomograms. J Appl Geophys 36:175–180. https://doi.org/10.1016/S0926-9851(96)00054-7
- 36. Karaboğa D (2005) An idea based on honey bee swarm for numerical optimization, Technical report-TR06. Erciyes University, Engineering Faculty, Computer Engineering Department
- 37. Keating P, Pilkington M (2004) Euler deconvolution of the analytic signal and its application to magnetic interpretation. Geophys Prospect 52:165–182
- 38. Kennedy J, Eberhart RC (1995) Particle swarm optimization. Proceedings of the IEEE Int Conf Neural Netw 4:1942–1948
- 39. Li Y, Oldenburg DW (1996) 3-D inversion of magnetic data. Geophysics 61:394–408. https://doi.org/10.1190/1.1443968
- 40. Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11:431–441. https://doi.org/10.1137/0111030
- 41. Mohan NL, Sundararajan N, Rao SVS (1982) Interpretation of some two-dimensional magnetic bodies using Hilbert transforms. Geophysics 47:376–387
- 42. Murthy IVR (1985) The midpoint method: magnetic interpretation of dikes and faults. Geophysics 50:834–839
- 43. MTA (1962) Mineral Research and Exploration Institute (MTA) of Turkey
- 44. Omran MGH, Clerc M (2011) http://www.particleswarm.info/ Last Accessed 19 Sep 2022
- 45. Otis GW (2004) Sociality of insects. In: Encyclopedia of entomology. Springer, Dordrecht. https://doi.org/10.1007/0-306-48380-7_3965
- 46. Ozer C, Polat O (2017) 3-D crustal velocity structure of Izmir and surroundings. J Fac Eng Archit Gazi Univ 32(3):733–748. https://doi.org/10.17341/gazimmfd.337620
- 47. Ozer C, Polat O (2017b) Local earthquake tomography of Izmir geothermal area, Aegean region of Turkey. Boll Geofis Teor Appl 58:17–42. https://doi.org/10.4430/bgta0191
- 48. Pujol J (2007) The solution of nonlinear inverse problems and the Levenberg–Marquardt method. Geophysics 72:1–16
- 49. Ram Babu HV, Rao Atchuta D (1991) Application of the Hilbert transform for gravity and magnetic interpretation. Pure Appl Geophys PAGEOPH 135:589–599. https://doi.org/10.1007/BF01772408
- 50. Rao DA, Ram Babu HV (1981) Nomograms for rapid evaluation of magnetic anomalies over long tabular bodies. Pure Appl Geophys PAGEOPH 119:1037–1050. https://doi.org/10.1007/BF00878968
- 51. Reid AB, Allsop JM, Granser H, Millett AJ, Somerton IW (1990) Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 55:80–91
- 52. Salem A, Ravat D, Smith R, Ushijima K (2005) Interpretation of magnetic data using an enhanced local wavenumber (ELW) method. Geophysics 70(2):7–12
- 53. Song X, Li L, Zhang X, Huang J, Shi X, Jin S, Bai Y (2014) An implementation of differential search algorithm (DSA) for inversion of surface wave data. J Appl Geophys 111:334–345. https://doi.org/10.1016/j.jappgeo.2014.10.017
- 54. Sözbilir H (2002) Geometry and origin of folding in the neogene sediments of the gediz graben, western Anatolia. Turk Geodin Acta 15(5–6):277–288. https://doi.org/10.1016/S0985-3111(02)01093-8
- 55. Spies BR, Macnae JC (1997) Electromagnetic trends – spatial, temporal and economic, pp 489 – 496. In: Proceedings of exploration 97, fourth decennial international conference on mineral exploration, AG Gubins (ed), Prospectors and Developers Association of Canada, p 1068
- 56. Srivastava S, Agarwal BNP (2010) Inversion of the amplitude of the two-dimensional analytic signal of the magnetic anomaly by the particle swarm optimization technique. Geophys J Int 182:652–662. https://doi.org/10.1111/j.1365-246X.2010.04631.x
- 57. Stampolidis A, Tsokas GN (2012) Use of edge delineating methods in interpreting magnetic archaeological data. Archaeol Prospect 19:123–140
- 58. Storn R, Price K (1995). Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012. International Computer Science Institute, Berkeley, USA.
- 59. Şekercioğlu CH (2007) Conservation ecology: area trumps mobility in fragment bird extinctions. Curr Biol. https://doi.org/10.1016/j.cub.2007.02.019
- 60. Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. SIAM, Philadelphia, p p358
- 61. Tokçaer M, Agostini S, Savaşçin MY (2005) Geotectonic setting and origin of the youngest Kula volcanics (western Anatolia), with a new emplacement model. Turk J Earth Sci 14:145–166
- 62. Trianni V, Tuci E, Passino KM, Marshall JAR (2011) Swarm cognition: an interdisciplinary approach to the study of self-organising biological collectives. Swarm Intell 5:3–18. https://doi.org/10.1007/s11721-010-0050-8
- 63. Venkata Raju DC (2003) LIMAT: a computer program for least-squares inversion of magnetic anomalies over long tabular bodies. Comput Geosci 29:91–98. https://doi.org/10.1016/S0098-3004(02)00108-5
- 64. Won IJ (1981) Application of Gauss’s method to interpretation of magnetic anomalies of dipping dikes. Geophysics 46:211–215
- 65. Yang XS, Deb S (2009) Cuckoo search via L´evy flights. In: IEEE world congress on nature and biologically inspired computing (NaBIC) Coimbatore, India, pp 210–214
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46e6a51f-1ca9-4da0-b18c-3722af5a63c4