PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Assessment of the Effectiveness of Open-Cast Sand Mine Reclamation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to assess the effect of sewage sludge (industrial and municipal) as components of composites with anthropogenic soil, used to create the top (0-25 cm) cover layer of open-cast sand mine reclamation on the content of organic carbon and plant nutrients (total N and available forms of P, K and Mg). In the excavation after sand mining, a reclamation technology was used, including filling the excavation with waste and producing Technosol using technical methods. The assessment of the effects of open-cast sand mine reclamation with waste showed that the reclamation cover made of waste meeting the ecological safety criteria was a good substrate for the emerging technogenic soil. The composite created from anthropogenic soil with the addition of sewage sludge (10:1) was characterized by a higher content of organic carbon, total nitrogen and available forms of P, K and Mg compared to anthropogenic soil fertilized with NPK fertilizers and manure. Monitoring of the surface layer properties (0-20 cm), carried out two years after introducing vegetation to the reclaimed area, showed that the assessed technology of reclamation of the excavation after sand mining using waste is a good way to solve the problem of dry areas devastated by open-cast mining of mineral deposits. Moreover, such waste management is in line with the strategy of the Closed Circulation Economy.
Twórcy
  • Faculty of Agrobioengineering, Institute of Soil Science, Environment Engineering and Management, University of Life Sciences in Lublin, ul. St. Leszczynskiego 7, 20-069 Lublin, Poland
  • Faculty of Agrobioengineering, Institute of Soil Science, Environment Engineering and Management, University of Life Sciences in Lublin, ul. St. Leszczynskiego 7, 20-069 Lublin, Poland
  • Nicolaus Copernicus University, Collegium Medicum, ul. Jagiellonska 13/15, 85-067 Bydgoszcz, Poland
Bibliografia
  • 1. Van Camp G., Gentile A., Bujarrabal B., Jones R., Montanarella L., Olazabal C., Selvaradjou S.. Reports of the Technical Working Groups Established under the Thematic Strategy for Soil Protection. Monitoring. 2004.
  • 2. Myszura-Dymek M, Żukowska G. The Influence of Sewage Sludge Composts on the Enzymatic Activity of Reclaimed Post-Mining Soil. Sustainability. 2023, 15(6), 4749. https://doi.org/10.3390/su15064749.
  • 3. Woś B., Pietrzykowski M. The influence of tree species on the content of macroelements and properties of initial soils in the conditions of a reclaimed sand pit. Sylwan. 2019, 163(05), 407-414. DOI 10.26202/sylwan.2018151.
  • 4. Pietrzykowski M., Krzaklewski W. Soil organic matter, C and N accumulation during natural succession and reclamation in an opencast sand quarry (southern Poland). Archives of Agronomy and Soil Science, 2007, 53(5) 473−483. https://doi. org/10.1080/03650340701362516.
  • 5. Lapčík V., Lapčíková M. Environmental Impact Assessment of Surface Mining. Inżynieria Mineralna. 2011, 12(1), 1-10.
  • 6. Act of 3 February 1995 on the protection of agricultural and forest land. Journal of Laws 2024.82.
  • 7. Karczewska A., Soil protection and reclamation of degraded areas. University of Life Sciences Publishing House. 2012.
  • 8. Topay M., Kaya L.G. The Education of Landscaping in Turkey, (in Turkish), Proc. Cong. On Landscaping Architecture, Antalya. 2007, 554-557.
  • 9. Hall S.L., Barton C.D., Baskin C.C. Topsoil seed bank of an oak-hickory forest in eastern Kentucky as a restoration tool on surface mines. Restoration Ecology. 2009, 18(6), 834-842. https://doi. org/10.1111/j.1526- 100x.2008.00509.x.
  • 10. Seifullina A., Er A., Nadeem S.P., Garza-Reyes J.A., Kumar V. A Lean Implementation Framework for the Mining Industry,IFAC-PapersOnLine. 2018, 51(11), 1149-1154. https://doi.org/10.1016/j. ifacol.2018.08.435.
  • 11. Paulo J.C. Favas, Louis E. Martino, Majeti N.V. Prasad. Chapter 1 - Abandoned Mine Land Reclamation—Challenges and Opportunities (Holis- tic Approach), Editor(s): Majeti Narasimha Vara Prasad, Paulo Jorge de Campos Favas, Subodh Kumar Maiti, Bio-Geotechnologies for Mine Site Rehabilitation. 2018, 3-31. https://doi.org/10.1016/ B978-0-12-812986-9.00001-4.
  • 12. Regulation of the Minister of the Environment of 11 May 2015 on the recovery of waste outside installations and devices. Journal of Laws 2015 item 796.
  • 13. Announcement of the Speaker of the Sejm of the Republic of Poland of 27 November 2014 on the announcement of the uniform text of the act on preventing environmental damage and its remediation. Journal of Laws 2014 item 1789.
  • 14. Larney F., Angers D.A. The role of organic amendments in soil reclamation: A review. Canadian Journal of Soil Science. 2012, 92, 19 - 38. https://doi. org/10.4141/cjss2010-064.
  • 15. Dulewski J., Uzarowicz R. Legal aspects of reclamation and revitalization of areas degraded by mining activities. CBiDGP i IETU. 2007, 76-85.
  • 16. De – Melo W.J., Marques M.O., De – Ferreira M.E., Melo G.M.P., De – Melo V.P. Chemical properties and enzyme activity in a sewage sludge treated soil. Communications in Soil Science and Plant Analysis. 2002, 33, 1643-1659. https://doi.org/10.1081/ CSS-120004305.
  • 17. Domene X., Mattana S., Ramírez W., Colón J., Jiménez P., Balanyà T., Alcañiz J.M., Bonmatí M. Bioassays prove the suitability of mining debris mixed with sewage sludge for land reclamation purposes. Journal of Soils and Sediments. 2010, 10, 30-44. https://doi.org/10.1007/s11368-009-0073-1.
  • 18. Jezierska-Tys S., Frąc M., Study on the influence of sludge from a dairy sewage treatment plant on the microbiological and biochemical activity of soil. Papers and monographs, Acta Agrophysica. 2008, 3, 14-25.
  • 19. Sullivan T.S., Stromberger M.E., Paschke M.W., Ippolito J.A., Long-term impacts of infrequent biosolids applications on chemical and microbial properties of semi-arid rangeland soil. Biology and Fertility of Soils. 2005. 42, 3, 258-266. https://doi. org/10.1007/s00374-005-0023-z.
  • 20. Nowak M., Kacprzak M., Grobelak A. Sewage sludge as a soil substitute in the processes of remediation and reclamation of areas contaminated with heavy metals. Engineering and Environmental Protection. 2010, 13(2), 121–131.
  • 21. Wydro U., Wołejko E., Jabłońska-Trypuć A., Butarewicz A., Łoboda T. The influence of sewage sludge on biological activity of soils. Construction and Environmental Engineering. 2017, 8(2), 103-108.
  • 22. Żukowska G., Flis-Bujak M., Baran S. The influence of sewage sludge fertilization on the organic matter of light soil for wicker cultivation. Acta Agrophysica, 2002, 73, 357–367.
  • 23. Zhao X.L., Mu Z.J., Cao C.M., Wang D.Y. Growth and Heavy-Metal Uptake by Lettuce Grown in Soils Applied with Sewage Sludge Compost. Communications in Soil Science and Plant Analysis. 2012, 43(11), 1532–1541. https://doi.org/10.1080/00103 624.2012.675390.
  • 24. Park J.H., Lamb D., Paneerselvam P., Choppala G., Bolan N., Chung J.W. Role of organic amendmends on enhanced bioremediation of heavy metal(loid) contaminated soils. J. Haz. Mater. 2011, 185, 549– 574. https://doi.org/10.1016/j.jhazmat.2010.09.082.
  • 25. Kacprzak M., Grobelak A., Grosser A. Prasad MNV. Efficacay of Biosolids in Assisted Phytostabilization of Metalliferous Acidic Sandy Soils with Five Grass Species. Int. J. Phytoremediation. 2014, 16(6), 593–608. https://doi.org/10.1080/15226514 .2013.798625.
  • 26. Pawłowski A., Pawłowski L., Pawłowska M., Kujawska J., Cel W., Baran S., Wesołowski M., Żukowska G., Bik-Małodzińska M., Kwiatkowski Z., 2017. Method of reclaiming mine excavations. In: European patent specification; EP 2979768 B1.
  • 27. Bik-Małodzińska M., Żukowska G., Paśmionka I. Innovative Technologies for the Use of Drilling Waste in Reclamation and Shaping the Physicochemical Properties of Degraded Soils. Advances in Science and Technology Research Journal. 2023, 17(3), 294- 301. https://doi.org/10.12913/22998624/166759.
  • 28. Baran S., Wójcikowska-Kapusta A., Żukowska G. The influence of sewage sludge and Grodan mineral wool used for the remediation of highly acidic soils on the content of lead and nickel forms Zesz. Prob. Post. Nauk Rol. 2009, 535, 23-31.
  • 29. Żukowska G., Myszura-Dymek M., Roszkowski S., Bik-Małodzińska M. Effect of Coal Mining Waste and Its Mixtures with Sewage Sludge and Mineral Wool on Selected Properties of Degraded Anthropogenic Soil. Journal of Ecological Engineering. 2023, 24(10), 340-350. https://doi. org/10.12911/22998993/170949.
  • 30. PN-EN 15936:2013:02. Available online: https://sklep.pkn.pl/pn-en-15936-2013-02p.html (accessed on 20 August 2024).
  • 31. International Organization for Standardization. Soil Quality. In Determination of Total Nitrogen Content by Dry Combustion; International Organization for Standardization: Geneva, Switzerland, 1998.
  • 32. Polish Committee for Standardization. Polish Standard: The Chemical and Agricultural Analysis of the Soil—Determination of the Content of Assailable Phosphorus in Mineral Soils; Polish Committee for Standardization: Warsaw, Poland. 1996.
  • 33. Schlichting E., Blume H.P., Stahr K. Bodenkundliches Praktikum. Pareys Studientexte 81. Berlin: Blackwell Wissenschafts-Verlag. 1995.
  • 34. Naeth M.A., Archibald H.A., Nemirsky C.L., Leskiw L.A., Brierley J.A., Bock M.D., Vanden-Bygaart A.J. Chanasyk D.S. Proposed classification for human modified soils in Canada: Anthroposolic order. Can. J. Soil Sci., 2012, 92, 7–18. https://doi. org/10.4141/cjss2011-028.
  • 35. Firpo B.A., do Amaral Filho J.R., Schneider I.A.H. A brief procedure to fabricate soils from coal mine wastes based on mineral processing, agricultural, and environmental concepts. Miner. Eng. 2015, 76, 81– 86. https://doi.org/10.1016/j.mineng.2014.11.005.
  • 36. Amaral L.F., Delaqua G.C.G., Nicolite M., Marvila M.T., de Azevedo A.R., Alexandre J., Monteiro S.N. Eco-friendly mortars with addition of ornamental stone waste-A mathematical model approach for granulometric optimization. J. Clean. Prod. 2020, 248, 119283. https://doi.org/10.1016/j.jclepro.2019.119283.
  • 37. Weiler J., Firpo B.A., Schneider I.A.H. Technosol as an integrated management tool for turning urban and coal mining waste into a resource. Miner. Eng. 2020, 147, 106179. https://doi.org/10.1016/j. mineng.2019.106179.
  • 38. Gann G.D., McDonald T., Walder B., Aronson J., Nelson C.R., Jonson J., Hallett J.G., Eisenberg C., Guariguata M.R., Liu J., Hua F., Echeverría C., Gonzales E., Shaw N., Decleer K., Dixon K.W. International principles and standards for the practice of ecological restoration. Second edition. Restor Ecol. 2019, 27, 1-46. https://doi.org/10.1111/rec.13035.
  • 39. Żukowska G., Myszura-Dymek M., Roszkowski S., Olkiewicz M. Selected Properties of Soil-like Substrates Made from Mine Coal Waste and Their Effect on Plant Yields. Sustainability. 2023, 15, 13341. https://doi.org/10.3390/su151813341.
  • 40. Nyamangara J., Mzezewa J. Effect of long-term application of sewage sludge to a grazed grass pasture on organic carbon and nutrients of a clay soil in Zimbabwe. Nutr. Cycl. Agroecosys. 2001, 59, 13–18. https://doi.org/10.1023/A:1009811618018.
  • 41. Ros M., Hernandez M.T., Garcia C. Bioremediation of soil degraded by sewage sludge: effects on soil properties and erosion losses. Environmental Management. 2003, 31, 6, 741-747. https://doi. org/10.1007/s00267-002-2839-8.
  • 42. Mtshali J.S., Tirunech A.T., Fadiran A.O. Characterization of sewage sludge generated from waste water treatment plants in Swaziland in relation to agricultural uses. Resour. Environ. 2014, 4 (4), 190–199. doi:10.5923/j.re.20140404.02.
  • 43. Napora A., Grobelak A. The influence of sewage sludge on soil microbiological and biochemical activity. Engineering and Environmental Protection, 2014, 17(4), 619–630.
  • 44. Tymchuk I., Malovanyy M., Bota O., Shkvirko O., Popovych O. Biological Reclamation Using a Sewage Sludge-Based Substrate – A Way to Ensure Sustainable Development of Urban Areas. Ecological Engineering & Environmental Technology. 2022, 23(1), 34-41. doi:10.12912/27197050/143029.
  • 45. Bodlák L., Křováková K., Kobesová M., Brom J., Šťastný J., Pecharová E. SOC content—An appropriate tool for evaluating the soil quality in a reclaimed postmining landscape. Ecological Engineering. 2012, 43, 53–59. https://doi.org/10.1016/j.ecoleng.2011.07.013.
  • 46. Courtney R., Harrington T.J., Byrne K.A. Indicators of soil formation in restored bauxite residues. Ecological Engineering. 2013, 58, 63–68. https:// doi.org/10.1016/j.ecoleng.2013.06.022.
  • 47. Siuta J. Remedial efficiency of sewage sludge at the soda waste landfill in Janikowo. Ecological Engineering. 2014, 36, 98-119. DOI:10.12912/2081139X.07.
  • 48. Pakhnenko E.P., Ermakov A.V., Ubugunov L.L. Influence of sewage sludge from sludge beds of Ulan-Ude on the soil properties and the yield and quality of potatoes. Mosc. Univ. Soil Sci. Bull. 2009, 64 (4), 175–181. https://doi.org/10.3103/ S0147687409040061.
  • 49. Królak E., Kot B., Sterniczuk K., Troć A., Zychowicz E., Powalska E. The influence of organic components on changes in the properties of reclaimed forest soils in a dry coniferous forest habitat. Forest Research Works. 2017, 78 (2), 165–170. DOI: 10.1515/frp-2017-0018.
  • 50. Siddigue M.T., Robinson J.S. Phosphorus sorption and availability in soils amendet with amimal manure and sewage sludge. Journal of Environmental Quality. 2003, 32, 1141-1121. https://doi. org/10.2134/jeq2003.1114.
  • 51. Shober A.L., Sims J.T. Phosphorus restrictions for land application of biosolids. Journal of Environmental Quality. 2003, 32, 1955-1964. https://doi. org/10.2134/jeq2003.1955.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46e43f25-d582-46b3-bb92-7cc94a9ec907
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.