PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geochemical characteristics of spherules from the Pivdenna kimberlite pipe, East Azov region (Ukraine) : implications for their sources and origin

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The composition of spherules and particles of native metals from the Pivdenna kimberlite pipe, Ukraine, was studied using the SEM/EDS method. Three varieties of spherules have been distinguished: titanium-manganese-iron-silicate (TMIS) spherules, Ca-rich silicate spherules, and magnetite-wustite-iron (MW-I) spherules. TMIS spherules are composed of homogeneous glass, some having a native iron core. Large TMIS spherules may contain a crystalline phase with needle-like armalcolite. Ca-rich silicate spherules can be subdivided into two subtypes: calcium-silicate (CS) spherules where SiO2 and CaO are the dominant constituents, and calcium-iron-silicate (CIS) spherules with significant FeO content. CS spherules may contain a core consisting of native phases (Fe, Fe-Si, and Mn-Si-Fe). Native metal particles are represented by native Cu and native Zn. The spherule varieties from the Pivdenna pipe are similar to those from other kimberlite pipes in the world. We infer that the formation of spherules occurred in gas-melt streams, separately from the kimberlites, and propose a model for the formation of the most common variety of spherules (TMIS and MW-I varieties) in the region of the core-mantle boundary (CMB). First, a melt of the Fe-Ti-Mn-Si-O system was formed in ultra-low-velocity zones (ULVZ) as a result of thermochemical reactions (reduction) between the molten core and solid oxide-silicate rocks. The melt then migrates to shallower levels, where a decrease in temperature initiates oxidation with the formation of SiO2-TiO2-FeO-MnO-Fe0 melt, i.e. parent melt of TMIS and MW-I spherules. We interpret the formation of native metals in kimberlites as a result of the decomposition of nitrides, which came from the Earth’s core via intratelluric flows.
Słowa kluczowe
Rocznik
Strony
art. no. 6
Opis fizyczny
Bibliogr. 69 poz., fot., rys., tab., wykr.
Twórcy
  • Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Science of Ukraine, Naukova 3a, 79060 Lviv, Ukraine
  • Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Science of Ukraine, Naukova 3a, 79060 Lviv, Ukraine
  • Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Science of Ukraine, Naukova 3a, 79060 Lviv, Ukraine
  • Ivan Franko National University of Lviv, Hrushevskoho 4., 79005 Lviv, Ukraine
Bibliografia
  • 1. Antonova, M.M., Brakhnova I.T., Borisova, A.l., Dvorina, L.A., Drozdova, S.V., Kosolapova, T.Ya., Kulik, O.P., Lynchak, K.A., Obolonchik, V.A., Panasyuk, A.D., Popova, O.I., Samsonov, G.V., Semenov-Kobzar, A.A., Serebryakova, T.I., Sinelnikova, V.S., Chernogorenko, V.B., Yanaki, A.A., 1976. Element Properties. Part 2. Chemical Properties (in Russian). Metalurgiya, Moscow.
  • 2. Badjukov, D.D., Jouko, R., 2003. Micrometeorites from the northern ice cap of the Novaya Zemlya arhipelago, Russia: The first occurrence. Meteoritics and Planetary Science, 38: 329-340. https://doi.org/10.1111/j.1945-5100.2003.tb00269.x
  • 3. Berczi, Sz., Lukacs, B., Torok, K., 1999. Snouted Spherules: in the Carpathian Basin and on Antarctica. Hungarian Academy of Sciences, Central Research Institute for Physics, Budapest.
  • 4. Bratus, M.D., Tatarintsev, V.I., Sakhno, B.E., 1987. The composition of fluid inclusions the hardened particles from explosive ring structures and kimberlite pipes (in Russian). Geokhimiya, 11: 1563-1568.
  • 5. Brown, G.M., Emeleus, C.H., Grenville, H.J., Phillips, R.P., 1970. Petrographic, mineralogic, and x-ray fluorescence analysis of lunar igneous-type rocks and spherules. Science, 167 599-601. https://doi.org/10.1126/science.167.3918.599
  • 6. Chaikovsky, I.I., Korotchenkova, O.V., 2012. Explosive mineral phases from Western Urals diamondiferous visherites (in Russian with English summary). Lithosphera, (2): 125-140.
  • 7. Culler, T.S., Muller, R.A., Renne, P., 1997. Use of lunar spherules to determine the terrestrial cratering rate over the last 3 Ga. Meteoritics and Planetary Science, 32: A32.
  • 8. Dawson, J.B., 1980. Kimberlites and their Xenoliths. Springer, Berlin-Heidelberg-New York.
  • 9. El Coresy, A., 1968. Electron microprobe analysis and ore microscopic study of magnetic spherules and grains collected from the Greenland ice. Contributions to Mineralogy and Petrology, 17: 331-346.
  • 10. Firestone, R.B., West, A., Kennett, J.P., Becker, L., Bunch, T.E., Revay, Z.S., Schultz, P.H., Belgya, T., Kennett, D.J., Erlandson, J.M., Dickenson, O.J., Goodyear, A.C., Harris, R.S., Howard, G.A., Kloosterman, J.B., Lechler, P., Mayewski, P.A., Montgomery, J., Poreda, R., Darrahp, T., Que Hee, S.S., Smith, A.R., Stich, A., Topping, W., Wittke, J.H., Wolbach, W.S., 2007. Evidence for an extraterrestrial impact 12,900 years ago that contributed megafaunal extinctions and the Younger Drias cooling. PNAS, 104: 16016-16021. https://doi.org/10.1073/pnas.0706977104
  • 11. Fredriksson, K., Dube, A., Milton, D.J., Balasundaram, M.S., 1973. Lonar lake, India: an impact crater in basalt. Science, 180: 862-864. https://doi.org/10.1126/science.180.4088.862
  • 12. Garnero, E., McNamara, A.K., 2008. Structure and dynamics of Earth's lower mantle. Science, 320: 626-628. https://doi.org/10.1126/science.1148028
  • 13. Geiko, Yu.V., Gurskyi, D.S., Lykov, L.I., Metalidi, V.S., Pavlyuk, V.N., Prykhodko, V.L., Tsymbal, S.N., Shumkiv, L.M., 2006. Perspectives of basement diamond productivity of Ukraine (in Russian). Tsentr Yevropy, Kyiv.
  • 14. Gentile, A.L., Foster, W.R., 1963. Calcium hexaluminate and its stability relations in the system CaO-Al2O3-SiO2. Journal of the American Ceramic Society, 46: 74-76.
  • 15. Gilat, A.L., Vol, A., 2012. Degassing of primordial hydrogen and helium as the major energy source for internal terrestrial processes. Geoscience Frontiers, 3: 911-921. https://doi.org/10.1016/j.gsf.2012.03.009
  • 16. Glass, B.P., Burns, C.A., Crosbie, J.R., Dubois, D.L., 1985. Late Eocene North American microtektites and clinopyroxene-bearing spherules. Journal of Geophysical Research, 90: 175-196.
  • 17. Grachev, A.F., Korchagin, O.A., Tselmovich, V.A., Kollmann, H.A., 2008. Cosmic dust and micrometeorites in the transitional clay layer at the Cretaceous-Paleogene boundary in the Gams section (Eastern Alps): morphology and chemical composition. Physics of the Solid Earth, 44: 555-569. https://doi.org/10.1134/S1069351308070069
  • 18. Graup, G., 1981. Terrestrial chondrules, glass spherules and accretionary lapilli from the suevite, Ries Crater, Germany. Earth and Planetary Science Letters, 55: 407-418. https://doi.org/10.1016/0012-821X(81)90168-0
  • 19. Grewal, D.S., Dasgupta, R., Holmes, A.K., Costin, G., Li, Yu., Tsuno, K., 2019. The fate of nitrogen during core-mantle separation on Earth. Geochimica et Cosmochimica Acta, 251 87-115. https://doi.org/10.1016/j.gca.2019.02.009
  • 20. Grewal, D.S., Dasgupta, R., Hough, T., Farnell, A., 2021. Rates of protoplanetary accretion and differentiation set nitrogen budget of rocky planets. Nature Geoscience, 14: 369-376. https://doi.org/10.1038/s41561-021-00733-0
  • 21. Griffin, W.L., Huang, J.-X., Thomassot, E., Gain, S.E.M., Toledo, V., O'Reilly, S.Y., 2018. Super-reducing conditions in ancient and modern volcanic systems: sources and behaviour of carbon-rich fluids in the lithospheric mantle. Mineralogy and Petrology, 112: 101-114. https://doi.org/10.1007/s00710-018-0575-x
  • 22. Griffin, V.L., Gain, S.E.M., Huang, J.-X., Saunders, M., Toledo, V., O'Reilly, S.Y., 2019. A terrestrial magmatic hibonite-grossite-vanadium assemblage: desilication and extreme reduction in a volcanic plumbing system, Mount Carmel, Israel. American Mineralogist, 104: 207-219. https://doi.org/10.2138/am-2019-6733
  • 23. Gursky, D.S., 2008. The Conception of the State Industrial Raw-Materials Politic of the Use of the Strategic Significant for the Country Economic Materials and Rocks (in Ukrainian). ZUKTs, Lviv.
  • 24. Hefferan, K., O'Brien, J., 2010. Earth Materials. Wiley-Blackwell, Chichester, West Sussex, UK.
  • 25. Hirose, K., Lay, T., 2008. Discovery of post-perovskite and new views on the core-mantle Boundary Region. Elements, 4: 181-186. https://doi.org/10.2113/GSELEMENTS.4.3.181
  • 26. Hodge, P.W., 1973. Lunar and terrestrial impact crater spherules. The Moon, 7: 483-486. https://doi.org/10.1007/BF00564648
  • 27. Kaminsky, F., Wirth, R., 2017. Nitrides and carbonitrides from the lowermost mantle and their importance in the search for Earth's “lost” nitrogen. Amĺrican Mineralogist, 102: 1667-1676. https://doi.org/10.1007/978-3-319-55684-0
  • 28. Kaminsky, F.V., 2017. The Earth's Lower Mantle. Composition and Structure. Springer Geology, Cham. https://doi.org/10.1007/978-3-319-55684-0_1
  • 29. Kaminsky, F.V., 2020. Basic problems concerning the composition of the Earth's lower mantle. Lithos, 364-365: 105515. https://doi.org/10.1016/j.lithos.2020.105515
  • 30. Knittle, E., Jeanloz, R., 1991. Earth's core-mantle boundary: Results of experiments at high pressures and temperatures. Science, 251: 1438-1443. https://doi.org/10.1126/science.251.5000.1438
  • 31. Lay, T., Williams, Q., Garnero, E.J., 1998. The core-mantle boundary layer and deep Earth dynamics. Nature, 392: 461-468. https://doi.org/10.1038/33083
  • 32. Letnikov, F.A., Dorogokupets, P.I., 2001. The role of superdeep fluid systems of the Earth's core in endogenous geological processes (in Russian with English summary). Doklady AN, 378: 535-537.
  • 33. Lukin, A.E., 2006. Native metals and carbides - marks of compositions of deep geospheres (in Russian with English summary). Geologicheskiy Zhurnal, (4): 17-46.
  • 34. Lukin, A.E., 2013. Mineral spherules - particular fluidic mode of ore and oil genesis (in Russian with English summary). Geofizicheskiy Zhurnal, 35: 10-53.
  • 35. Makeyev, V.A., Kriulina, G.Yu., 2012. Metal films on the surfaces and within diamond crystals from Arkhangelskaya and Yakutian diamond provinces. Geology of Ore Deposits, 54: 663-673. https://doi.org/10.1134/S1075701512080107
  • 36. Marshintsev, V.K., 1990. The nature of spheroid formations in kimberlites (in Russian). In: Traces of Cosmic Impact on the Earth (ed. A.N. Dmitriev): 45-57. Nauka, Novosibirsk.
  • 37. Medvedev, Ye.I., Molchanov, V.P., Khomich, V.G., 2006. Palladium-bearing gold, magnetite and shorlomite microspherules from placers of the Blagodatnensk cluster (Primorie), and their possible sources. Russian Journal of Pacific Geology, 25: 92-96.
  • 38. Mitchell, R.H., 1987. Kimberlites, Mineralogy, Geochemistry, and Petrology. Plenum Press, New York.
  • 39. Morgan, J.P., Reston, T.J., Ranero, C.R., 2004. Contemporaneous mass extinctions, continental flood basalts, and ‘impact signals': are mantle plume-induced lithospheric Earth and gas explosions the causal link? Earth and Planetary Science Letters, 217: 263-284. https://doi.org/10.1016/S0012-821X(03)00602-2
  • 40. Nikolsky, N.S., 1987. Fluid Regime of Endogenous Ore Formation (in Russian). Nauka, Moskow.
  • 41. Novgorodova, M.I., Gamyanin, G.N., Zhdanov, Yu.A., Agakhanov, T.V., Dikaya. T.V., 2003. Aluminosilicate glass microspherules in gold ores (in Russian). Geokhimiya, (1): 89-93.
  • 42. O'Keefe, J.A., 1986. Eocene microtektites and clinopyroxene-bearing spherule. Lunar and Planetary Science, 17: 630-631.
  • 43. Oliveira, B., Griffin, W.L., Gain, S.E.M., Saunders, M., Shaw, J., Toledo, V., Afonso, J.C., O'Reilly, S.Y., 2021. Ti3+ in corundum traces crystal growth in a highly reduced magma. Scientific Reports, 2439: 1-12. https://doi.org/10.1038/s41598-020-79739-4
  • 44. Peskov, E.G., 2000. Geologic Evidence of the Earth's Cold Degasing (in Russian with English summary). NEISRI FEB RAS, Magadan.
  • 45. Petford, N., Rushmer, T., Yuen, D.A., 2007. Deformation-induced mechanical instabilities at the core-mantle boundary. In: Post-Perovskite: the Last Mantle Phase Transition (eds. K. Hirose, J. Brodholt, T. Lay and D. Yuen): 271-287. Geophysical Monograph Series, 174. https://doi.org/10.1029/174GM18
  • 46. Robin, E., Froget, L., Jehanno, C., Rocchia, R., 1993. Evidence for a K/T impact event in the Pacific Ocean. Nature, 363 615-617. https://doi.org/10.1038/363615a0
  • 47. Rychagov, S.N., Glavatskikh, S.F., Sandimirova, Ye.I., 1997. Ore and silicate magnetic spherules as indicators of the structure and fluid regime of the modern Baransky hydrothermal system, Iturup Island (in Russian). Doklady AN, 356: 677-681.
  • 48. Sandimirova, Ye.I., Glavatskikh, S.F., Rychagov, S.N., 2003. Magnetic spherules from volcanogenic rocks of the Kuril Islands and South Kamchatka (in Russian). Vestnik KRAUNTS. Nauki o Ziemle, (1): 135-140.
  • 49. Sheremet, E.M., Kozyr, N.A., Strekozov, S.N., Chashka, A.I., Bondarenko, V.A., Fedorishin, Yu.I., Pigulevsky, P.I., 2014. Explorations for Diamonds in the Azov Block of Ukrainian Shield (in Russian). Noulidzh, Donetsk.
  • 50. Sparks, R.S.J., Baker, L., Brown, R.J., Field, M., Schumaher, J., Stripp, J., Walters, A., 2006. Dynamical constrains on kimberlite volcanism. Journal of Volcanology and Geothermal Research, 155: 18-48. https://doi.org/10.1016/j.jvolgeores.2006.02.010
  • 51. Speelmanns, I.M., Max, W., Schmidt, M.W., Liebske, C., 2018. Nitrogen solubility in core materials. Geophysical Research Letters,45: 7434-7443. https://doi.org/10.1029/2018GL079130
  • 52. Tatarintsev, V.I., Tsymbal, S.N., Garanin, V.K., Kudryavtseva, G.P., Marshintsev, V.K., 1983. Hardened particles from kimberlites of Yakutia (in Russian). Doklady AN SSSR, 270: 1199-1203.
  • 53. Tatarintsev, V.I., Sandomirskaya, S.M., Tsymbal, S.N., 1987. The first discovery of titanium nitride (osbornite) in the rocks of the Earth (in Russian). Doklady AN SSSR, 296: 1458-1461.
  • 54. Taylor, S., Lever, J.H., Harvey, R.P., 2000. Number, types and compositions of an unbiased collection of cosmic spherules. Meteoritics and Planetary Science, 35: 651-666. https://doi.org/10.1111/j.1945-5100.2000.tb01450.x
  • 55. Tischenko, A.I., 2004. Gold and other native metals in kimberlites of the Eastern Azov region (in Ukrainian). In: Prospects for Diamond Potential on Ukraine Territories (ed. D.S. Gursky): 106-111. UkrDGRI, Kyiv.
  • 56. Tschauner, O., Huang, S., Yang, S., Humayun, M., Liu, W., Corder, S.N.G., Bechtel, H.,A., Tischler, J., Rossman, G.R., 2021. Discovery of davemaoite, CaSiO3-perovskite, as a mineral from the lower mantle. Science, 374: 891-894. https://doi.org/10.1126/science.abl8568
  • 57. Tsymbal, S.N., Kvasnitsa, V.N., Tsymbal, Yu.S., Melnichuk, E.V., 1999. Diamond from impactites of Belilovskaya (Western) astrobleme (in Russian). Mineralogycheskiy Jurnal, 21: 45-52.
  • 58. Uzonyi, I., Kiss, A.Z., Solt, P., Dosztaly, L., Kakay Szabo, O., Detre, Cs.H., 1998. Analysis of glassy spherules extracted from Carpathian Mesozoic limestone by IPIXE method. Nuclear Instruments and Methods in Physics Research, 139: 192-195.
  • 59. Vaganov, V.I., Ivankin, P.F., Kropotkin, P.N., Trukhalev, A.I., Semenenko, N.P., Tsymbal, C.N., Tatarintsev, V.I., Glukhovsky, M.Z., Bulgakov, E.A., 1985. Explosive Ring Structures of Shields and Platforms (in Russian). Nedra, Moskow.
  • 60. Wilson, L., Head, J.W., 2007. An integrated model of kimberlite ascent and eruption. Nature, 447: 53-57. https://doi.org/10.1038/nature05692
  • 61. Yatsenko, I.G., 2016. Silicate-metallic spherules in explosive and sedimentary formations of Ukraine. Genetic and prospecting aspects (in Ukrainian with English summary). Ph.D. Thesis, Ivan Franko University of Lviv.
  • 62. Yatsenko, G.M., Gursky, D.S., Slivko, E.M., Geyko, Yu.V., Prihodko, V.L., Rosihina, A.I., Drosdetsky, V.V., Yatsenko, V.G., 2002. Diamondiferous formations and structures on the southwest side of East-European platform (in Russian). UkrDGRI, Kyiv.
  • 63. Yatsenko, I., Yatsenko, G., Bekesha, S., Bilyk, N., Varychev, A., Druchok, L., 2012a. Endogenous Ti-Mn-Fe silicate spherules from explosive structures and volcanic-sedimentary formations of Ukraine (in Ukrainian with English summary). Mineralogichnyi zbirnyk, 62: 83-101.
  • 64. Yatsenko, I., Yatsenko, G., Naumko, I., S.N., Bekesha, S., Bilyk, N., Shvayevskyi, O., 2012b. Volatile components in endogenous spherules and the problem of fluidised-explosive ore genesis (in Ukrainian with English summary). Mineralogichnyi Zbirnyk, 62: 189-199.
  • 65. Yatsenko, I.G., Bilyk, N.T., Kuderavets, R.S., Tymoshuk, V.R., Shvayevsky, A.V., 2013a. Explosive mantle-derived particles in sedimentary formations of the Carpathian region, connection with the problem of fuels and ore deposits formation (in Russian with English summary). Geodinamica, 15: 72-74. https://doi.org/10.23939/jgd2013.02.072
  • 66. Yatsenko, I.G., Yatsenko, G.M., Naumko, I.M., Bekesha, S.N. Sahno, B.E., 2013b. Composition of volatile components in endogenous spherules. Abstracts of XXX international conference “Alcaline magmatism of the Earth”. GEOHI RAN, Moscow: 62-63. http://alkaline.web.ru/2013/abstracts/Yatsenko.htm
  • 67. Yatsenko, I.G., Skublov, S.G., Levashova, E.V., Galankina, O.L., Bekesha S.N., 2020. Composition of spherules and lower mantle minerals, isotopic and geochemical characteristics of zircon from volcaniclastic facies of the Mriya lamproite pipe. Journal of Mining Institute, 242: 150-159. https://doi.org/10.31897/PMI.2020.2.150
  • 68. Zhatnuev, N.S., 2016. Transmantle (intratelluric) fluid flows. a new model for plumes and plume magmatism (in Russian with English summary). Geologiya i geofisika, 57: 1445-1454. http://dx.doi.org/10.15372/GiG20160802
  • 69. Zinchenko, V., Dech, V., Shafranovsky, G., 2012. Kimberlites and Diamonds of Katoka Pipe: Petrogenesis, Ore Genesis and Modeling the Distribution of Diamonds. Palmarium Academic Publishing, Saarbrücken.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46e2895f-7607-4443-9668-c4ce23683de1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.