PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Optimizing industrial flow measurements in mineral processing: Utilizing radiotracers for enhanced data reliability within Mining 4.0

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As the mining sector undergoes rapid transformation, Industry 4.0 principles - such as data digitalization, process automation, and Big Data Analytics - are crucial for developing intelligent mineral processing plants. These principles advance processes towards an interconnected sequence of steps, each relying on high-quality data. Within this framework, low-uncertainty flowmeter data is vital for accurate metallurgical mass balance determination, efficient process control, and the correct application of advanced analytical tools. However, harsh mining conditions can cause significant deviations in flowmeter readings, necessitating robust data validation methods. This paper introduces the novel application of the radiotracer methodology, which provides certified uncertainties around 1%, to optimize flowmeter data accuracy and align with Mining 4.0 requirements. Three industrial validation examples are presented: Flow meter adjustment in leaching processes, evaluating a NaHS loop piping circuit in a molybdenum flotation plant and validating flow meters to assess the hydraulic behavior of recirculation pumping stations for water balance quantification. On-site validations at the leaching plant revealed that only 36% of the measurements were within the acceptable 5% error margin. Flow assurance was confirmed in the NaHS loop piping circuit as radiotracer velocity data showed no blockages. Deviations in the recirculation pumping stations, ranging from 6.91% to 22.55%, highlighted the need for flowmeter adjustments. These findings underscore the value of radiotracers as a validation method. This paper also provides insights for water and environmental impact assessment, metallurgical mass balance calculations, and process optimization, emphasizing the need to integrate radiotracer methodology within the Mining 4.0 framework.
Rocznik
Strony
art. no. 200742
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
  • Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago 8370251, Chile
  • Trazado Nuclear e Ingeniería SpA, Santiago 7760016, Chile
Bibliografia
  • ADZAKLO, S.Y., DAGAGU, C.P.K., MUMUNI, I.I., ADU, P.A.S., AFFUM, H.A., APPIAH, G.K., COLEMAN, A. 2018. Radiotracer Investigation of the Effect of Impeller Type on Mixing in Industrial Process Simulator. JAMP, 6, 468-474.
  • AFFUM, H.A., ADU, P.S., DAGAGU, C.P.K., COLEMAN, A., ADDO, M.A. 2013. A typical radiotracer test design: application to a fluid catalytic cracking unit. e-JST, 8(2).
  • BARRIENTOS, N.A., DIAZ, F., HENRIQUEZ, F. 2022. Hydrodynamic evaluation of an industrial flotation plant by means of radioactive tracers: a tool to support the global metallurgical balance. In: Proceedings of the 2nd International Conference on Applications of Radiation Science and Technology. Vienna, Austria.
  • BOUSDEKIS, A., LEPENIOTI, K., APOSTOLOU, D., MENTZAS, G. 2021. A Review of Data-Driven Decision-Making Methods for Industry 4.0 Maintenance Applications. Electronics, 10(7), 828.
  • COOPER, E.L. 1987. Radiotracer techniques for measuring fluid flow and calibrating flow meters (No. AECL--9522). Atomic Energy of Canada Ltd.
  • DIAZ, F., Jimenez, O., Diaz, A., Leinweber, G., Rojas, D., Bernal, R., Salinas, C.G. 2016. Flowmeter Validation Method for Pipes with Scaling in an Industrial Water Pumping Station for Mineral Processing in Los Pelambres Mine, Chile, Through Fluorescent and Radioactive Tracers. In: Proceedings of the XXVIII International Mineral Processing Congress (IMPC 2016). Quebec City, Canada.
  • DIAZ, F., BARRIENTOS, N.A., PARADA, P. HENRIQUEZ, F., VELAZQUES, J. ROJAS, D. 2022. Hydrodynamic evaluation of a NaHS loop piping circuit in a molybdenum flotation plant by means of radiotracers. In: Proceedings of the 2nd International Conference on Applications of Radiation Science and Technology. Vienna, Austria.
  • DIAZ, F., BARRIENTOS, N.A. 2023. Application of radiotracers as tools to determine feed flowrate imbalances and particle size segregation in industrial flotation circuits. Physicochem. Probl. Miner. Process. 59(5), 174817.
  • DIAZ, F., BARRIENTOS, N.A. 2024. Determining the residence time distribution in the industrial heap leaching of copper by means of radiotracers. In: Proceedings of the 9th International Conference on Tracers and Tracing Methods (TRACER 9). Benicassim, Spain.
  • EL TOKHY, M.S., KASBAN, H., ALI, E.H. 2025. Malfunction diagnosis based on residence time distribution of radiotracer signals in industrial processes using machine learning techniques. Ann. Nucl. Energy, 211, 110976.
  • GONCALVES, E.R., BRADAO, L.E.B., BRAZ, D. 2021. Validation of transient time method to calibrate oil flow meters in closed conduits using 123I as the radiotracer. Nukeonika, 66, 2, 69-74.
  • INTERNATIONAL ATOMIC ENERGY AGENCY. 1983. Guidebook on Nuclear Techniques in Hydrology. 1983 edition. Report Series Nº 91, Vienna, Austria.
  • INTERNATIONAL ATOMIC ENERGY AGENCY. 2001. Radiotracer technology as applied to industry. IAEA-TECDOC-1262., Vienna, Austria.
  • INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO). 1980. Measurement of liquid flow in closed conduits – Weighting method. ISO 4185/80. Geneva, Switzerland
  • INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO). 1977. Measurement of water flow in closed conduits – Tracer methods – Part 7: Transit time method using radioactive tracers. ISO 2975-7: 1977. Geneva, Switzerland.
  • INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO). 1994. Measurement of liquid flow in open channels – Tracer dilution methods for the measurement of steady flow. Part 1 General. ISO 9555-1:1994. Geneva, Switzerland.
  • KUOPPAMAKI, R. 2006. Flow Measurements Field Calibrations by Radioisotope Tracers in the Off-Shore, Oil and Gas Industry. In: Proceedings of the 24th International North Sea Flow Measurement Workshop. St. Andrews, Scotland, UK.
  • LELINSKI, D., ALLEN, J., REDDEN, L., WEBER, A. 2002. Analysis of the Residence Time Distribution in Large Flotation Machines, Miner. Eng., 15 pp. 499–505
  • OLU-LAWAL, K.A., OLAJIGA, O.K., ANI, E.C., ADELEKE, A.K., MONTERO, D.J.P. 2024. The role of precision metrology in enhancing manufacturing quality: a comprehensive review. Eng.Sci.Technol. 5(3), 728-739.
  • PANT, H.J., KUNDU, A., NIGAM, K.D.P. 2001. Radiotracer applications in chemical process industry. Rev. Chem. Eng., 17(3), 165-252.
  • PANT, H.J., GOSWAMI, S., SHARMA, V.K., Maity, S.K., Garg, M.O. 2017. Flow investigation in an industrial-scale soaker using radiotracer technique. Appl. Radiat. Isotop., 124, 119-123
  • PANT, H.J., GOSWAMI, S., CHAFLE, S.B., SHARMA, V.K., KOTAK, V., SHUKLA, V., MISHRA, A., GOHEL, N.C., BHATTACHARYA, S. 2022. Investigation of transport of radionuclide in a thermal stratification test facility using radiotracer technique. NET, 54(4), 1449-1455.
  • PARK, I., Hong, S., Jeon, S., Ito, M., Hiroyoshi, N. 2020. A Review of Recent Advances in Depression Techniques for Flotation Separation of Cu–Mo Sulfides in Porphyry Copper Deposits. Metals, 10(9), 1269.
  • RAO, S.M. 1987. Radioisotope tracer applications in industry. Seminar on the application of nuclear techniques in industry, UNDP/IAEA Regional Industrial Project, Kuala Lumpur, Malaysia.
  • RAYUDU, G.V. (Ed.). 2019. Radiotracers for medical applications (Vol. 2). CRC press.
  • SARKAR, M., SANGAL, V.K., PANT, H.J., SHARMA, V.K., BHUNIA, H., BAJPAI, P.K. 2021. Application of tracer technology in wastewater treatment processes: a review. Chem. Eng. Comm., 210(1), 16–33.
  • SCHUH, G., POTENTE, T., THOMAS, C., BRAMBRING, F. 2013. Improving Data Integrity in Production Control. Procedia CIRP, 9, 44-48.
  • TAYYIB, D., AL-QASIM, A., KOKAL, S., HUSEBY, O. 2019. Overview of Tracer Applications in Oil and Gas Industry. In: Proceedings of the SPE Kuwait Oil & Gas Show and Conference, Mishref, Kuwait.
  • VINNETT, L., CONTRERAS, F., DIAZ, F., PINO-MUNOZ, C., LEDEZMA, T. 2022. Estimating Residence Time Distributions in Industrial Closed-Circuit Ball Mills. Minerals. 12(12), 1574.
  • VINNETT, L., YIANATOS, J., HASSANZADEH, A., DIAZ, F., HENRIQUEZ, F. 2023. Residence Time Distribution Measurements and Modeling in an Industrial-Scale Siemens Flotation Cell. Minerals, 13(5), 678.
  • VINNETT, L., YIANATOS, J., DIAZ, F., HASSANZADEH, A. 2024. Estimating effective volumes in industrial forced-air flotation cells. Miner. Eng. 211,108678.
  • WINNIFORD, W.L., DUNKLE, M.N. 2020. Tracers for Oil and Gas Reservoirs. Analytical Techniques in the Oil and Gas Industry for Environmental Monitoring (eds M.N. Dunkle and W.L Winniford).
  • YIANATOS, J., VINNETT, L., PANIRE, I., ALVAREZ-SILVA, M., DIAZ, F. 2017. Residence time distribution measurements and modelling in industrial flotation columns. Miner. Eng., 110, 139-144.
  • ZHANG, S., WANG, X., GAO, X., CHEN, X., LINGER, L., GUOQUIN, L., LIU, C., MIAO, Y., WANG, R., HU, K.2025. Radiopharmaceuticals and their applications in medicine. Sig. Transduct. Target.Ther., 10(1), 1
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46e0a4a5-3c9a-4a00-92e8-b40675b9f84e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.